Choi Taeyoung, Paul William, Rolf-Pissarczyk Steffen, Macdonald Andrew J, Natterer Fabian D, Yang Kai, Willke Philip, Lutz Christopher P, Heinrich Andreas J
IBM Almaden Research Center, San Jose, California 95120, USA.
Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany.
Nat Nanotechnol. 2017 May;12(5):420-424. doi: 10.1038/nnano.2017.18. Epub 2017 Mar 6.
Spin resonance provides the high-energy resolution needed to determine biological and material structures by sensing weak magnetic interactions. In recent years, there have been notable achievements in detecting and coherently controlling individual atomic-scale spin centres for sensitive local magnetometry. However, positioning the spin sensor and characterizing spin-spin interactions with sub-nanometre precision have remained outstanding challenges. Here, we use individual Fe atoms as an electron spin resonance (ESR) sensor in a scanning tunnelling microscope to measure the magnetic field emanating from nearby spins with atomic-scale precision. On artificially built assemblies of magnetic atoms (Fe and Co) on a magnesium oxide surface, we measure that the interaction energy between the ESR sensor and an adatom shows an inverse-cube distance dependence (r). This demonstrates that the atoms are predominantly coupled by the magnetic dipole-dipole interaction, which, according to our observations, dominates for atom separations greater than 1 nm. This dipolar sensor can determine the magnetic moments of individual adatoms with high accuracy. The achieved atomic-scale spatial resolution in remote sensing of spins may ultimately allow the structural imaging of individual magnetic molecules, nanostructures and spin-labelled biomolecules.
自旋共振通过探测微弱的磁相互作用,提供了确定生物和材料结构所需的高能量分辨率。近年来,在检测和相干控制单个原子尺度的自旋中心以实现灵敏的局部磁力测量方面取得了显著成就。然而,将自旋传感器定位并以亚纳米精度表征自旋-自旋相互作用仍然是突出的挑战。在这里,我们在扫描隧道显微镜中使用单个铁原子作为电子自旋共振(ESR)传感器,以原子尺度精度测量来自附近自旋的磁场。在氧化镁表面人工构建的磁性原子(铁和钴)组件上,我们测量到ESR传感器与吸附原子之间的相互作用能呈现反立方距离依赖性(r)。这表明原子主要通过磁偶极-偶极相互作用耦合,根据我们的观察,这种相互作用在原子间距大于1 nm时占主导。这种偶极传感器能够高精度地确定单个吸附原子的磁矩。在自旋遥感中实现的原子尺度空间分辨率最终可能允许对单个磁性分子、纳米结构和自旋标记生物分子进行结构成像。