Suppr超能文献

理解典型非质子离子液体中氢键网络的结构及其对振动光谱的影响。

Understanding the Structure of the Hydrogen Bond Network and Its Influence on Vibrational Spectra in a Prototypical Aprotic Ionic Liquid.

作者信息

Brela Mateusz Z, Kubisiak Piotr, Eilmes Andrzej

机构信息

Faculty of Chemistry , Jagiellonian University , Gronostajowa 2 , 30-387 Kraków , Poland.

出版信息

J Phys Chem B. 2018 Oct 18;122(41):9527-9537. doi: 10.1021/acs.jpcb.8b05839. Epub 2018 Oct 4.

Abstract

Analysis of the hydrogen bond network in aprotic ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) has been performed based on structures obtained from ab initio or classical molecular dynamics simulations. Statistics of different donor and acceptor atoms and the amount of chelating or bifurcated bonds has been presented. Most of the hydrogen bonds in EMIM-TFSI are formed with oxygen atoms as hydrogen acceptors; and the most probable bifurcated bonds are those with a mixed pair of oxygen and nitrogen acceptors. Spectral graph analysis has shown that the cations may form hydrogen bonds with up to five different anions and the connectivity of the whole hydrogen bond network is supported mainly by H-O bonds. In the structures of the liquid simulated via force field-based dynamics, the number of hydrogen bonds is smaller and fluorine atoms are the most favored hydrogen acceptors. One-dimensional potential energy profiles for hydrogen atom displacements and corresponding vibrational frequencies have been calculated for selected C-H bonds. Individual C-H stretching frequencies vary by 200-300 cm, indicating differences in local environment of hydrogen atoms forming C-H···O hydrogen bonds.

摘要

基于从头算或经典分子动力学模拟得到的结构,对非质子离子液体1-乙基-3-甲基咪唑双(三氟甲基磺酰)亚胺(EMIM-TFSI)中的氢键网络进行了分析。给出了不同供体和受体原子的统计数据以及螯合键或分叉键的数量。EMIM-TFSI中的大多数氢键是与作为氢受体的氧原子形成的;最可能的分叉键是那些具有氧和氮受体混合对的键。光谱图分析表明,阳离子可能与多达五个不同的阴离子形成氢键,并且整个氢键网络的连通性主要由H-O键支持。在通过基于力场的动力学模拟的液体结构中,氢键的数量较少,氟原子是最有利的氢受体。已针对选定的C-H键计算了氢原子位移的一维势能分布和相应的振动频率。各个C-H伸缩频率变化200-300 cm,表明形成C-H···O氢键的氢原子的局部环境存在差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验