Suppr超能文献

基于金/石墨烯/金双等离子体增强的超快、宽带、自驱动硅肖特基光电探测器。

Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector.

机构信息

School of Electronic Sciences and Applied Physics and Anhui Provincial Key Laboratory of Advanced Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China.

出版信息

Nanotechnology. 2018 Dec 14;29(50):505203. doi: 10.1088/1361-6528/aae360. Epub 2018 Sep 21.

Abstract

High-performance photodetectors are desirable for various applications, including multi-wavelength image sensing, communication, and safety monitoring. In this study, we report the construction of a dual-surface plasmon-enhanced silicon Schottky photodetector using Au nanoparticles (NPs)/graphene/Au NPs hybrid structure as the electrode. It was found that the as-assembled device exhibited broad sensitivity, ranging from ultraviolet to near-infrared light (360-1330 nm) at room temperature, with a high response speed of 360 ns and a 3 dB bandwidth of 780 kHz at zero bias. Further theoretical simulation based on the finite-element method revealed that good device performance is associated with the contribution of the Au NPs/graphene/Au NPs electrode: intense dual-plasmonic resonance coupling is induced in a hybrid structure of two layers of metallic NPs separated by a uniform monolayer graphene. It not only can enhance light trapping and the localized electric field at the resonant and off-resonant wavelength regions, but is also beneficial for the tunneling of hot electrons. This work demonstrated the great potential of dual-plasmonic resonance coupling in optoelectronic devices and will lead to the development of advanced plasmonic devices.

摘要

高性能光电探测器在多种应用中是理想的,包括多波长图像感应、通信和安全监测。在这项研究中,我们报告了使用金纳米粒子(NPs)/石墨烯/Au NPs 混合结构作为电极的双表面等离子体增强硅肖特基光电探测器的构建。结果发现,所组装的器件在室温下表现出从紫外光到近红外光(360-1330nm)的宽灵敏度,在零偏压下具有 360ns 的高响应速度和 780kHz 的 3dB 带宽。进一步基于有限元方法的理论模拟表明,良好的器件性能与 Au NPs/石墨烯/Au NPs 电极的贡献有关:在由两层金属 NPs 通过均匀单层石墨烯隔开的混合结构中,诱导了强烈的双等离子体共振耦合。它不仅可以增强在共振和非共振波长区域的光捕获和局域电场,而且有利于热电子的隧穿。这项工作证明了双等离子体共振耦合在光电设备中的巨大潜力,并将导致先进的等离子体设备的发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验