Suppr超能文献

Parkin 依赖性调节 MCU 复合物组件 MICU1。

Parkin-dependent regulation of the MCU complex component MICU1.

机构信息

Department of Biomedical Sciences and Public Health, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.

Department of Biomedical Sciences, University of Padova, via U. Basi 58/b, 35131, Padova, Italy.

出版信息

Sci Rep. 2018 Sep 21;8(1):14199. doi: 10.1038/s41598-018-32551-7.

Abstract

The mitochondrial Ca uniporter machinery is a multiprotein complex composed by the Ca selective pore-forming subunit, the mitochondrial uniporter (MCU), and accessory proteins, including MICU1, MICU2 and EMRE. Their concerted action is required to fine-tune the uptake of Ca into the mitochondrial matrix which both sustains cell bioenergetics and regulates the apoptotic response. To adequately fulfil such requirements and avoid impairment in mitochondrial Ca handling, the intracellular turnover of all the MCU components must be tightly regulated. Here we show that the MCU complex regulator MICU1, but not MCU and MICU2, is rapidly and selectively degraded by the Ubiquitin Proteasome System (UPS). Moreover, we show that the multifunctional E3 ubiquitin ligase Parkin (PARK2), whose mutations cause autosomal recessive early-onset Parkinson's disease (PD), is a potential candidate involved in this process since its upregulation strongly decreases the basal level of MICU1. Parkin was found to interact with MICU1 and, interestingly, Parkin Ubl-domain, but not its E3-ubquitin ligase activity, is required for the degradation of MICU1, suggesting that in addition to the well documented role in the control of Parkin basal auto-inhibition, the Ubl-domain might exert important regulatory functions by acting as scaffold for the proteasome-mediated degradation of selected substrates under basal conditions, i.e. to guarantee their turnover. We have found that also MICU2 stability was affected upon Parkin overexpression, probably as a consequence of increased MICU1 degradation. Our findings support a model in which the PD-related E3 ubiquitin ligase Parkin directly participates in the selective regulation of the MCU complex regulator MICU1 and, indirectly, also of the MICU2 gatekeeper, thus indicating that Parkin loss of function could contribute to the impairment of the ability of mitochondria to handle Ca and consequently to the pathogenesis of PD.

摘要

线粒体钙单向转运体(MCU)由钙离子选择性通道形成亚基(MCU)和辅助蛋白(包括 MICU1、MICU2 和 EMRE)组成,是一个多蛋白复合物。它们的协同作用对于微调 Ca 进入线粒体基质的摄取至关重要,这既维持了细胞的生物能量,又调节了细胞凋亡反应。为了充分满足这些要求并避免线粒体 Ca 处理受损,所有 MCU 成分的细胞内周转都必须受到严格调节。本文表明,MCU 复合物调节剂 MICU1,而不是 MCU 和 MICU2,可被泛素蛋白酶体系统(UPS)快速且选择性地降解。此外,本文还表明,多功能 E3 泛素连接酶 Parkin(PARK2)可能是参与该过程的潜在候选物,因为其上调强烈降低了 MICU1 的基础水平。Parkin 被发现与 MICU1 相互作用,有趣的是,Parkin Ubl 结构域,但不是其 E3-泛素连接酶活性,是 MICU1 降解所必需的,这表明除了在控制 Parkin 基础自动抑制方面的已有作用外,Ubl 结构域可能通过充当支架来发挥重要的调节功能,以确保其在基础条件下的降解。我们发现,Parkin 过表达也会影响 MICU2 的稳定性,可能是由于 MICU1 降解增加所致。我们的研究结果支持这样一种模型,即 PD 相关的 E3 泛素连接酶 Parkin 直接参与 MCU 复合物调节剂 MICU1 的选择性调节,并间接参与 MICU2 守门员的调节,这表明 Parkin 功能丧失可能导致线粒体处理 Ca 的能力受损,从而导致 PD 的发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/133e/6155109/65c9d5f7e5f6/41598_2018_32551_Fig1_HTML.jpg

相似文献

1
Parkin-dependent regulation of the MCU complex component MICU1.
Sci Rep. 2018 Sep 21;8(1):14199. doi: 10.1038/s41598-018-32551-7.
3
The structure of the MICU1-MICU2 complex unveils the regulation of the mitochondrial calcium uniporter.
EMBO J. 2020 Oct 1;39(19):e104285. doi: 10.15252/embj.2019104285. Epub 2020 Aug 13.
4
Evidence supporting the MICU1 occlusion mechanism and against the potentiation model in the mitochondrial calcium uniporter complex.
Proc Natl Acad Sci U S A. 2023 Apr 18;120(16):e2217665120. doi: 10.1073/pnas.2217665120. Epub 2023 Apr 10.
5
Functional roles of MICU1 and MICU2 in mitochondrial Ca(2+) uptake.
Biochim Biophys Acta. 2016 Jun;1858(6):1110-7. doi: 10.1016/j.bbamem.2016.02.022. Epub 2016 Feb 18.
6
Structure of the MICU1-MICU2 heterodimer provides insights into the gatekeeping threshold shift.
IUCrJ. 2020 Feb 27;7(Pt 2):355-365. doi: 10.1107/S2052252520001840. eCollection 2020 Mar 1.
8
Altered composition of the mitochondrial Cauniporter in the failing human heart.
Cell Calcium. 2022 Jul;105:102618. doi: 10.1016/j.ceca.2022.102618. Epub 2022 Jun 22.
9
Structures reveal gatekeeping of the mitochondrial Ca uniporter by MICU1-MICU2.
Elife. 2020 Jul 15;9:e59991. doi: 10.7554/eLife.59991.
10
Mechanisms of dual modulatory effects of spermine on the mitochondrial calcium uniporter complex.
bioRxiv. 2023 Jun 6:2023.06.06.543936. doi: 10.1101/2023.06.06.543936.

引用本文的文献

1
Adenylyl Cyclases as Therapeutic Targets in Neuroregeneration.
Int J Mol Sci. 2025 Jun 25;26(13):6081. doi: 10.3390/ijms26136081.
3
4
Calcium-mediated regulation of mitophagy: implications in neurodegenerative diseases.
NPJ Metab Health Dis. 2025;3(1):4. doi: 10.1038/s44324-025-00049-2. Epub 2025 Feb 3.
6
Calcium signaling in mitochondrial intermembrane space.
Biochem Soc Trans. 2024 Oct 30;52(5):2215-2229. doi: 10.1042/BST20240319.
7
Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease.
Nat Cardiovasc Res. 2024 May;3(5):500-514. doi: 10.1038/s44161-024-00463-7. Epub 2024 May 1.
8
MCU complex: Exploring emerging targets and mechanisms of mitochondrial physiology and pathology.
J Adv Res. 2025 Feb;68:271-298. doi: 10.1016/j.jare.2024.02.013. Epub 2024 Feb 27.
9
Post-translational modification and mitochondrial function in Parkinson's disease.
Front Mol Neurosci. 2024 Jan 11;16:1329554. doi: 10.3389/fnmol.2023.1329554. eCollection 2023.
10
The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Role in Human Diseases.
Biomolecules. 2023 Aug 25;13(9):1304. doi: 10.3390/biom13091304.

本文引用的文献

1
Ubiquitin-Dependent Degradation of Mitochondrial Proteins Regulates Energy Metabolism.
Cell Rep. 2018 Jun 5;23(10):2852-2863. doi: 10.1016/j.celrep.2018.05.013.
2
Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand.
Cell Metab. 2018 Feb 6;27(2):439-449.e5. doi: 10.1016/j.cmet.2017.12.008. Epub 2018 Jan 11.
3
High-affinity cooperative Ca binding by MICU1-MICU2 serves as an on-off switch for the uniporter.
EMBO Rep. 2017 Aug;18(8):1397-1411. doi: 10.15252/embr.201643748. Epub 2017 Jun 14.
4
Parkin regulation of CHOP modulates susceptibility to cardiac endoplasmic reticulum stress.
Sci Rep. 2017 May 18;7(1):2093. doi: 10.1038/s41598-017-02339-2.
5
Structure-guided mutagenesis reveals a hierarchical mechanism of Parkin activation.
Nat Commun. 2017 Mar 9;8:14697. doi: 10.1038/ncomms14697.
6
Inhibition of the mitochondrial calcium uniporter rescues dopaminergic neurons in pink1 zebrafish.
Eur J Neurosci. 2017 Feb;45(4):528-535. doi: 10.1111/ejn.13473. Epub 2016 Dec 28.
7
A MICU1 Splice Variant Confers High Sensitivity to the Mitochondrial Ca Uptake Machinery of Skeletal Muscle.
Mol Cell. 2016 Nov 17;64(4):760-773. doi: 10.1016/j.molcel.2016.10.001. Epub 2016 Nov 3.
8
Emerging (and converging) pathways in Parkinson's disease: keeping mitochondrial wellness.
Biochem Biophys Res Commun. 2017 Feb 19;483(4):1020-1030. doi: 10.1016/j.bbrc.2016.08.153. Epub 2016 Aug 28.
9
Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter.
Biochim Biophys Acta. 2016 Oct;1863(10):2457-64. doi: 10.1016/j.bbamcr.2016.03.006. Epub 2016 Mar 8.
10
EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter.
Cell Rep. 2016 Jan 26;14(3):403-410. doi: 10.1016/j.celrep.2015.12.054. Epub 2016 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验