Waldrop Lindsay D, He Yanyan, Khatri Shilpa
Depatment of Biology, New Mexico Institute of Mining and Technology Socorro, Socorro, NM, 87801, USA.
Depatment of Mathematics, New Mexico Institute of Mining and Technology Socorro, Socorro, NM, 87801, USA.
J Chem Ecol. 2018 Dec;44(12):1084-1100. doi: 10.1007/s10886-018-1017-2. Epub 2018 Sep 21.
A major transition in the history of the Pancrustacea was the invasion of several lineages of these animals onto land. We investigated the functional performance of odor-capture organs, antennae with olfactory sensilla arrays, through the use of a computational model of advection and diffusion of odorants to olfactory sensilla while varying three parameters thought to be important to odor capture (Reynolds number, gap-width-to-sensillum-diameter ratio, and angle of the sensilla array with respect to oncoming flow). We also performed a sensitivity analysis on these parameters using uncertainty quantification to analyze their relative contributions to odor-capture performance. The results of this analysis indicate that odor capture in water and in air are fundamentally different. Odor capture in water and leakiness of the array are highly sensitive to Reynolds number and moderately sensitive to angle, whereas odor capture in air is highly sensitive to gap widths between sensilla and moderately sensitive to angle. Leakiness is not a good predictor of odor capture in air, likely due to the relative importance of diffusion to odor transport in air compared to water. We also used the sensitivity analysis to make predictions about morphological and kinematic diversity in extant groups of aquatic and terrestrial crustaceans. Aquatic crustaceans will likely exhibit denser arrays and induce flow within the arrays, whereas terrestrial crustaceans will rely on more sparse arrays with wider gaps and little-to-no animal-induced currents.
泛甲壳动物历史上的一个重大转变是这些动物的几个谱系向陆地的入侵。我们通过使用气味剂向嗅觉感受器平流和扩散的计算模型,研究了具有嗅觉感受器阵列的触角这种气味捕捉器官的功能性能,同时改变了三个被认为对气味捕捉很重要的参数(雷诺数、间隙宽度与感受器直径之比以及感受器阵列相对于迎面而来气流的角度)。我们还使用不确定性量化对这些参数进行了敏感性分析,以分析它们对气味捕捉性能的相对贡献。该分析结果表明,在水中和空气中的气味捕捉有根本差异。水中的气味捕捉和阵列的泄漏对雷诺数高度敏感,对角度中度敏感,而空气中的气味捕捉对感受器之间的间隙宽度高度敏感,对角度中度敏感。泄漏不是空气中气味捕捉的良好预测指标,这可能是因为与水相比,扩散在空气中气味传输中的相对重要性。我们还利用敏感性分析对现存水生和陆生甲壳类动物群体的形态和运动多样性进行了预测。水生甲壳类动物可能会表现出更密集的阵列并在阵列内诱导水流,而陆生甲壳类动物将依赖间隙更宽且几乎没有或没有动物诱导水流的更稀疏阵列。