Suppr超能文献

基于交通流量和气象条件预测 NO 浓度的随机森林分区模型。

A random forest partition model for predicting NO concentrations from traffic flow and meteorological conditions.

机构信息

Department of Mathematics, Wroclaw University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland.

出版信息

Sci Total Environ. 2019 Feb 15;651(Pt 1):475-483. doi: 10.1016/j.scitotenv.2018.09.196. Epub 2018 Sep 17.

Abstract

High concentrations of nitrogen dioxide in the air, particularly in heavily urbanised areas, have an adverse effect on many aspects of residents' health (short-term and long-term damage, unpleasant odour and other). A method is proposed for modelling atmospheric NO concentrations in a conurbation, using a partition model M consisting of two separate models: M for lower concentration values and M for upper values. An advanced data mining technique, that of random forests, is used. This is a method based on machine learning, involving the simultaneous compilation of information from multiple random trees. Using the example of data recorded in Wrocław (Poland) in 2015-2017, an iterative method was applied to determine the boundary concentration y˜ for which the mean absolute deviation error for the partition model attained its lowest value. The resulting model had an R value of 0.82, compared with 0.60 for a classical random forest model. The importances of the variables in the model M, similarly as in the classical case, indicate that the greatest influence on NO concentrations comes from traffic flow, followed by meteorological factors, in particular the wind direction and speed. In the model M the importances of the variables are significantly different: while traffic flow still has the greatest impact, the effects of temperature and relative humidity are almost as great. This confirms the justifiability of constructing separate models for low and high pollution concentrations.

摘要

空气中二氧化氮浓度较高,特别是在城市化严重的地区,会对居民健康的许多方面产生不利影响(短期和长期损害、异味等)。提出了一种用于模拟城市群大气中 NO 浓度的分区模型 M 方法,该模型由两个单独的模型组成:用于较低浓度值的 M 模型和用于较高浓度值的 M 模型。使用了一种先进的数据挖掘技术,即随机森林方法。这是一种基于机器学习的方法,涉及从多个随机树同时编译信息。使用 2015-2017 年在弗罗茨瓦夫(波兰)记录的数据示例,应用迭代方法确定分区模型的边界浓度 y˜,使得对于该边界浓度,平均绝对偏差误差达到最低值。所得模型的 R 值为 0.82,而经典随机森林模型的 R 值为 0.60。模型 M 中变量的重要性与经典模型类似,表明交通流量对 NO 浓度的影响最大,其次是气象因素,特别是风向和风速。在模型 M 中,变量的重要性有显著差异:虽然交通流量仍然具有最大的影响,但温度和相对湿度的影响几乎相同。这证实了为低浓度和高浓度污染分别构建模型的合理性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验