CEA/DAM/DIF, F-91297 Arpajon, France.
J Chem Phys. 2018 Sep 21;149(11):114301. doi: 10.1063/1.5028456.
We use molecular dynamics simulations with the ReaxFF-lg potential to model the high pressure pyrolysis of carbon suboxide (CO) in mixture with argon as a pressure bath. We show that the reactive simulations catch the experimental behavior of the low-pressure detonation of CO (around 10 bars in shock tube experiments) and allow extrapolations to the high-pressure range of solid-state explosive detonation (up to 60 GPa). While at low pressure carbonaceous nanostructures are formed through the aggregation of species such as carbon dimers C, it appears that the high pressure deeply modifies the process, with the aggregation of growing CO heterostructures, in which the oxygen amount is driven by the pressure and the temperature. Pressures in the order of 60 GPa lead to high oxygen ratios, which prevent carbon atoms to get four carbon neighbors (the first condition to get a diamond structure). But a pressure lowering leads to a substantial carbon enrichment through CO/CO release and facilitates the formation of pure -carbon phases where diamond precursors can form. These results give new insights on the conditions leading to nanodiamonds during the detonation of carbon-rich high explosives.
我们使用 ReaxFF-lg 势能的分子动力学模拟来模拟一氧化碳亚氧化物 (CO) 在与氩气混合作为压力浴中的高压热解。我们表明,反应性模拟捕捉到了 CO 在低压爆轰(冲击管实验中约 10 巴)的实验行为,并允许将其外推到固态爆炸爆轰的高压范围(高达 60 GPa)。虽然在低压下,碳质纳米结构是通过诸如碳二聚体 C 等物质的聚合形成的,但似乎高压会深刻地改变这一过程,形成不断生长的 CO 异质结构的聚合,其中氧的数量由压力和温度驱动。在 60 GPa 左右的压力下,会导致高氧比,这会阻止碳原子形成四个碳原子的邻居(形成钻石结构的第一个条件)。但是,压力降低会导致 CO/CO 的释放,从而使碳大量富集,并促进形成纯碳相,其中可以形成金刚石前体。这些结果为富含碳的高能炸药爆轰过程中形成纳米金刚石的条件提供了新的见解。