Suppr超能文献

大鼠初级化学感觉皮质中经验依赖性 c-Fos 表达。

Experience-dependent c-Fos expression in the primary chemosensory cortices of the rat.

机构信息

Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, United States.

Department of Anatomical Sciences and Neurobiology, University of Louisville, KY 40202, United States.

出版信息

Brain Res. 2018 Dec 15;1701:189-195. doi: 10.1016/j.brainres.2018.09.019. Epub 2018 Sep 19.

Abstract

Eating a new food is a unique event that guides future food choices. A key element for these choices is the perception of flavor (odor-taste associations), a multisensory process dependent upon taste and smell. The two primary cortical areas for taste and smell, gustatory cortex and piriform cortex, are thought to be crucial regions for processing and responding to odor-taste mixtures. To determine how previous experience impacts the primary chemosensory cortices, we compared the expression of the immediate early gene, c-Fos, between rats presented with a taste, an odor, or an odor-taste mixture for the first-time with rats that had many days of prior experience. Compared to rats with prior experience, we found that first-time sampling of all three chemosensory stimuli led to significantly greater c-Fos expression in gustatory cortex. In piriform cortex, only the novel chemosensory stimuli containing odors showed greater c-Fos expression. These results indicate that prior experience with taste, odor, or odor-taste stimuli habituates responses in the primary chemosensory cortices and adds further evidence supporting gustatory cortex as a fundamental node for the integration of gustatory and olfactory signals.

摘要

进食新食物是一种独特的事件,它指导着未来的食物选择。这些选择的一个关键因素是对味道的感知(气味-味道的关联),这是一个依赖于味觉和嗅觉的多感官过程。味觉和嗅觉的两个主要皮质区域,味觉皮质和梨状皮质,被认为是处理和响应气味-味道混合物的关键区域。为了确定先前的经验如何影响主要的化学感觉皮质,我们比较了首次呈现味觉、气味或气味-味道混合物的大鼠与有多天经验的大鼠之间即时早期基因 c-Fos 的表达。与有经验的大鼠相比,我们发现,首次对所有三种化学感觉刺激的采样都导致味觉皮质中 c-Fos 的表达显著增加。在梨状皮质中,只有含有气味的新化学感觉刺激显示出更大的 c-Fos 表达。这些结果表明,味觉、气味或气味-味道刺激的先前经验使主要化学感觉皮质的反应习惯化,并进一步证明了味觉皮质作为味觉和嗅觉信号整合的基本节点。

相似文献

1
Experience-dependent c-Fos expression in the primary chemosensory cortices of the rat.
Brain Res. 2018 Dec 15;1701:189-195. doi: 10.1016/j.brainres.2018.09.019. Epub 2018 Sep 19.
3
Single-neuron responses to intraoral delivery of odor solutions in primary olfactory and gustatory cortex.
J Neurophysiol. 2017 Mar 1;117(3):1293-1304. doi: 10.1152/jn.00802.2016. Epub 2016 Dec 21.
5
Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.
J Neurosci. 2017 Jan 11;37(2):244-257. doi: 10.1523/JNEUROSCI.1926-16.2016.
6
Chemosensory convergence on primary olfactory cortex.
J Neurosci. 2012 Nov 28;32(48):17037-47. doi: 10.1523/JNEUROSCI.3540-12.2012.
7
Interhemispheric asymmetry of c-Fos expression in glomeruli and the olfactory tubercle following repeated odor stimulation.
FEBS Open Bio. 2020 May;10(5):912-926. doi: 10.1002/2211-5463.12851. Epub 2020 Apr 13.

引用本文的文献

3
An intra-oral flavor detection task in freely moving mice.
iScience. 2024 Jan 16;27(2):108924. doi: 10.1016/j.isci.2024.108924. eCollection 2024 Feb 16.
4
The impact of familiarity on cortical taste coding.
Curr Biol. 2022 Nov 21;32(22):4914-4924.e4. doi: 10.1016/j.cub.2022.09.053. Epub 2022 Oct 18.
5
Experience Informs Consummatory Choices for Congruent and Incongruent Odor-Taste Mixtures in Rats.
Chem Senses. 2020 May 29;45(5):371-382. doi: 10.1093/chemse/bjaa025.
6
Sweet and bitter taste stimuli activate VTA projection neurons in the parabrachial nucleus.
Brain Res. 2019 Jul 1;1714:99-110. doi: 10.1016/j.brainres.2019.02.027. Epub 2019 Feb 23.

本文引用的文献

1
Processing of Intraoral Olfactory and Gustatory Signals in the Gustatory Cortex of Awake Rats.
J Neurosci. 2017 Jan 11;37(2):244-257. doi: 10.1523/JNEUROSCI.1926-16.2016.
2
Preexposure to salty and sour taste enhances conditioned taste aversion to novel sucrose.
Learn Mem. 2016 Apr 15;23(5):221-8. doi: 10.1101/lm.040360.115. Print 2016 May.
3
Multisensory Perception: The Building of Flavor Representations.
Curr Biol. 2015 Oct 19;25(20):R986-8. doi: 10.1016/j.cub.2015.09.009.
4
A Multisensory Network for Olfactory Processing.
Curr Biol. 2015 Oct 19;25(20):2642-50. doi: 10.1016/j.cub.2015.08.060. Epub 2015 Oct 1.
5
6
Retronasal odor concentration coding in glomeruli of the rat olfactory bulb.
Front Integr Neurosci. 2014 Oct 24;8:81. doi: 10.3389/fnint.2014.00081. eCollection 2014.
7
Licking microstructure reveals rapid attenuation of neophobia.
Chem Senses. 2014 Mar;39(3):203-13. doi: 10.1093/chemse/bjt069. Epub 2013 Dec 20.
8
Perception of odor-induced tastes following insular cortex lesion.
Neurocase. 2015 Feb;21(1):33-43. doi: 10.1080/13554794.2013.860175. Epub 2013 Dec 5.
9
Glomerular input patterns in the mouse olfactory bulb evoked by retronasal odor stimuli.
BMC Neurosci. 2013 Apr 8;14:45. doi: 10.1186/1471-2202-14-45.
10
Taste and odour-induced taste perception following unilateral lesions to the anteromedial temporal lobe and the orbitofrontal cortex.
Cogn Neuropsychol. 2013;30(1):41-57. doi: 10.1080/02643294.2013.776526. Epub 2013 Mar 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验