Claeys Kimberly C, Zasowski Evan J, Lagnf Abdalhamid M, Sabagha Noor, Levine Donald P, Davis Susan L, Rybak Michael J
University of Maryland School of Pharmacy, Baltimore, MD, USA.
Anti-Infective Research Laboratory, Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, Detroit, MI, USA.
Infect Dis Ther. 2018 Dec;7(4):495-507. doi: 10.1007/s40121-018-0212-3. Epub 2018 Sep 22.
Acute bacterial skin and skin structure infections (ABSSSIs) represent a large burden to the US healthcare system. There is little evidence-based guidance regarding the appropriate level of care for ABSSSIs. This study aimed to develop a prediction model and risk-scoring tool to determine appropriate levels of care.
This was a single-center observational cohort study of adult patients treated for ABSSSIs from 2012 to 2015 at the Detroit Medical Center. The predictive model used to create a novel risk-scoring tool was derived using multinomial regression analysis. The overall accuracy of this tool was compared to the Clinical Resource Efficacy Support Team (CREST) Classification and Standardized Early Warning Score (SEWS) using area-under-the- receiver-operator-curve (AUROC) analysis and Z-statistic.
Final patient disposition was 230 (45.5%) home from the emergency department (ED), 65 (12.8%) observation unit (OU), and 211 (41.7%) initial inpatient. IV antibiotic therapy was used in 358 (70.8%) patients. CREST and SEWS were not accurate in the determination of ED versus OU disposition [AUROC CREST 0.0.682 (95% CI 0.640-0.724), AUROC SEWS 0.686 (95% CI 0.641-0.731)], but performed better in determining ED/OU versus inpatient [AUROC CREST = 0.678 (95% CI 0.630-0.725), AUROC SEWS 0.693 (95% CI 0.645-0.740)]. These scores were also not accurate in determining IV versus PO antibiotic therapy [AUROC CREST = 0.586 (95% CI 0.530-0.624), AUROC SEWS = 0.630 (95% CI 0.576-0.684)]. A risk-scoring tool ranging from 0 to 10 points was derived incorporating WBC, temperature, site of infection, and past medical history of diabetes, liver disease, PVD, AKI, and/or CKD. The AUROC of the new model was 0.675 (95% CI 0.611-0.739) ED versus OU, 0.789 (95% CI 0.748-0.829) ED/OU versus inpatient, and 0.742 (95% CI 0.694-0.789) IV versus oral antibiotics. The new score had a significantly higher AUROC compared to both the CREST and SEWS for determining ED/OU versus inpatient (p < 0.001).
Prediction models based on patient risk may be useful for determining appropriate level of care during for ABSSSIs. While the prediction model demonstrated moderate to high levels of correlation with patient level of care, further validation of a prospective cohort of patients is warranted.
急性细菌性皮肤和皮肤结构感染(ABSSSI)给美国医疗系统带来了沉重负担。关于ABSSSI适当护理水平的循证指南很少。本研究旨在开发一种预测模型和风险评分工具,以确定适当的护理水平。
这是一项对2012年至2015年在底特律医疗中心接受ABSSSI治疗的成年患者进行的单中心观察性队列研究。用于创建新型风险评分工具的预测模型是通过多项回归分析得出的。使用受试者工作特征曲线下面积(AUROC)分析和Z统计量,将该工具的总体准确性与临床资源疗效支持团队(CREST)分类和标准化早期预警评分(SEWS)进行比较。
最终患者处置情况为:230例(45.5%)从急诊科(ED)出院回家,65例(12.8%)进入观察单元(OU),211例(41.7%)最初住院治疗。358例(70.8%)患者使用了静脉抗生素治疗。CREST和SEWS在确定ED与OU处置方面不准确[CREST的AUROC为0.682(95%CI 0.640 - 0.724),SEWS的AUROC为0.686(95%CI 0.641 - 0.731)],但在确定ED/OU与住院患者方面表现较好[CREST的AUROC = 0.678(95%CI 0.630 - 0.725),SEWS的AUROC为0.693(95%CI 0.645 - 0.740)]。这些评分在确定静脉与口服抗生素治疗方面也不准确[CREST的AUROC = 0.586(95%CI 0.530 - 0.624),SEWS的AUROC = 0.630(95%CI 0.576 - 0.684)]。得出了一个范围为0至10分的风险评分工具,纳入了白细胞、体温、感染部位以及糖尿病、肝病、外周血管疾病、急性肾损伤和/或慢性肾脏病的既往病史。新模型的AUROC在ED与OU比较中为0.675(95%CI 0.611 - 0.739),在ED/OU与住院患者比较中为0.789(95%CI 0.748 - 0.829),在静脉与口服抗生素比较中为0.742(95%CI 0.694 - 0.789)。在确定ED/OU与住院患者方面,新评分的AUROC显著高于CREST和SEWS(p < 0.001)。
基于患者风险的预测模型可能有助于确定ABSSSI期间的适当护理水平。虽然预测模型与患者护理水平显示出中度至高度的相关性,但仍需对前瞻性患者队列进行进一步验证。