Suppr超能文献

基于改进的鲁棒异方差概率神经网络的云服务选择信任预测方法。

An improved robust heteroscedastic probabilistic neural network based trust prediction approach for cloud service selection.

机构信息

Centre for Information Super Highway (CISH), School of Computing, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.

Discrete Mathematics Research Laboratory (DMRL), Department of Mathematics, SASTRA Deemed University, Thanjavur, Tamil Nadu, India.

出版信息

Neural Netw. 2018 Dec;108:339-354. doi: 10.1016/j.neunet.2018.08.005. Epub 2018 Aug 18.

Abstract

Trustworthiness is a comprehensive quality metric which is used to assess the quality of the services in service-oriented environments. However, trust prediction of cloud services based on the multi-faceted Quality of Service (QoS) attributes is a challenging task due to the complicated and non-linear relationships between the QoS values and the corresponding trust result. Recent research works reveal the significance of Artificial Neural Network (ANN) and its variants in providing a reasonable degree of success in trust prediction problems. However, the challenges with respect to weight assignment, training time and kernel functions make ANN and its variants under continuous advancements. Hence, this work presents a novel multi-level Hypergraph Coarsening based Robust Heteroscedastic Probabilistic Neural Network (HC-RHRPNN) to predict trustworthiness of cloud services to build high-quality service applications. HC-RHRPNN employs hypergraph coarsening to identify the informative samples, which were then used to train HRPNN to improve its prediction accuracy and minimize the runtime. The performance of HC-RHRPNN was evaluated using Quality of Web Service (QWS) dataset, a public QoS dataset in terms of classifier accuracy, precision, recall, and F-Score.

摘要

可信度是一个综合性的质量指标,用于评估面向服务的环境中的服务质量。然而,由于服务质量(QoS)属性之间复杂且非线性的关系,基于多方面的 QoS 属性来预测云服务的可信度是一项具有挑战性的任务。最近的研究工作揭示了人工神经网络(ANN)及其变体在提供合理程度的信任预测问题上的重要性。然而,关于权重分配、训练时间和核函数的挑战使得 ANN 及其变体在不断发展。因此,本工作提出了一种新颖的基于多级超图粗化的稳健异方差概率神经网络(HC-RHRPNN),以预测云服务的可信度,从而构建高质量的服务应用程序。HC-RHRPNN 采用超图粗化来识别信息样本,然后使用 HRPNN 对其进行训练,以提高其预测准确性并最小化运行时间。使用质量网络服务(QWS)数据集评估 HC-RHRPNN 的性能,该数据集是一个公共的 QoS 数据集,在分类器准确性、精度、召回率和 F 分数方面进行评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验