Suppr超能文献

基于自适应模糊概率推理系统的普及医疗环境信任模型。

A Trust Model for Ubiquitous Healthcare Environment on the Basis of Adaptable Fuzzy-Probabilistic Inference System.

出版信息

IEEE J Biomed Health Inform. 2018 Jul;22(4):1288-1298. doi: 10.1109/JBHI.2017.2733038. Epub 2017 Jul 28.

Abstract

Trust is considered to be a determinant on psychologist selection which can ensure patient satisfaction. Hence, trust concept is essential to be introduced into ubiquitous healthcare (UH) environment oriented on patients with anxiety disorders. This is accomplished by trust model estimating psychologists' trustworthiness, a priory to service delivery, with the use of patient's and his/her acquaintances testimonies, i.e., personal interaction experience and reputation (R). In this paper, a trust model is proposed to be materialized via an adaptable cloud inference system (ACIS) that performs trust value (TV) estimation. Taking advantage of a cloud theory, the introduced ACIS estimates TVs via fuzzy-probabilistic reasoning incorporating a cloud relation operator (soft AND) which is proposed to be tuned by trust information sources consistency and coherency. Theoretical analysis along with comparative study conducted within MATLAB environment and experimental investigation verify the effectiveness of the proposed ACIS materialization under different conditions. Especially, the innovative features of ACIS enable TV to be estimated with 45.5% and 62% on average higher accuracy to that providing state-of-the-art trust models, within clean environment and under the influence of large-scale collusive malicious attacks, respectively. The enhanced robustness permits the untrustworthy UH providers to be discriminated with true positive rate at the range of 0.9 although 40% of R testimonies are erroneous. Finally, experimental investigation validates that the adoption of the proposed trust model for psychologists trustworthiness estimation facilitates patient satisfaction to be achieved into UH environment.

摘要

信任被认为是选择心理学家的决定因素,可以确保患者满意度。因此,信任概念对于面向焦虑障碍患者的普及医疗保健(UH)环境至关重要。这是通过信任模型来实现的,该模型可以在提供服务之前评估心理学家的可信度,使用患者及其熟人的证言,即个人互动经验和声誉(R)。在本文中,提出了一种通过自适应云推理系统(ACIS)来实现的信任模型,该系统执行信任值(TV)估计。利用云理论,引入的 ACIS 通过模糊概率推理进行 TV 估计,其中包含提出的云关系运算符(软 AND),该运算符通过信任信息源一致性和连贯性进行调整。在 MATLAB 环境中进行的理论分析和比较研究以及实验研究验证了在不同条件下提出的 ACIS 实现的有效性。特别是,ACIS 的创新功能使 TV 的估计精度平均提高了 45.5%和 62%,优于最先进的信任模型,分别在清洁环境中和在大规模协同恶意攻击的影响下。增强的鲁棒性允许以 0.9 的真阳性率来区分不可信的 UH 提供者,尽管有 40%的 R 证言是错误的。最后,实验研究验证了采用拟议的信任模型来评估心理学家的可信度有助于在 UH 环境中实现患者满意度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验