Suppr超能文献

X射线吸收的动态多重散射处理:肌红蛋白新分子动力学力场的参数化

Dynamic multiple-scattering treatment of X-ray absorption: Parameterization of a new molecular dynamics force field for myoglobin.

作者信息

Chillemi Giovanni, Anselmi Massimiliano, Sanna Nico, Padrin Cristiano, Balducci Lodovico, Cammarata Marco, Pace Elisabetta, Chergui Majed, Benfatto Maurizio

机构信息

Institute for Microbiology and Genetics, Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.

CINECA, SuperComputing Applications and Innovation Department, Via dei Tizii 6, 00185 Roma, Italy.

出版信息

Struct Dyn. 2018 Sep 12;5(5):054101. doi: 10.1063/1.5031806. eCollection 2018 Sep.

Abstract

We present a detailed analysis of the X-ray absorption near-edge structure (XANES) data on the Fe K-edge of CO Myoglobin based on a combined procedure of Molecular Dynamics (MD) calculations and MXAN (Minuit XANes) data analysis that we call D-MXAN. The ability of performing quantitative XANES data analysis allows us to refine classical force field MD parameters, thus obtaining a reliable tool for the atomic investigation of this important model system for biological macromolecules. The iterative procedure here applied corrects the greatest part of the structural discrepancy between classical MD sampling and experimental determinations. Our procedure, moreover, is able to discriminate between different heme conformational basins visited during the MD simulation, thus demonstrating the necessity of a sampling on the order of tens of nanoseconds, even for an application such X-ray absorption spectroscopy data analysis.

摘要

我们基于分子动力学(MD)计算和MXAN(Minuit XANes)数据分析相结合的程序(我们称之为D-MXAN),对一氧化碳肌红蛋白铁K边的X射线吸收近边结构(XANES)数据进行了详细分析。进行定量XANES数据分析的能力使我们能够优化经典力场MD参数,从而获得一个用于对这个重要的生物大分子模型系统进行原子研究的可靠工具。这里应用的迭代程序校正了经典MD采样与实验测定之间结构差异的大部分。此外,我们的程序能够区分MD模拟过程中访问的不同血红素构象盆地,从而证明即使对于X射线吸收光谱数据分析这样的应用,也需要进行数十纳秒量级的采样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b8e9/6135643/d11ffb3ed428/SDTYAE-000005-054101_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验