Suppr超能文献

External anions regulate stilbene-sensitive proton transport in placental brush border vesicles.

作者信息

Cabrini G, Illsley N P, Verkman A S

出版信息

Biochemistry. 1986 Oct 7;25(20):6300-5. doi: 10.1021/bi00368a070.

Abstract

The mechanism for HCO3-(-)independent proton permeability in microvillus membrane vesicles (MVV) isolated from human placenta was examined by using the entrapped pH indicator 6-carboxyfluorescein (6CF). Proton fluxes (JH) across MVV were determined in response to induced pH and anion gradients from the time course of 6CF fluorescence, the MVV buffer capacity, and the 6CF vs. pH calibration. In the absence of anions, JH was 12 +/- 2 nequiv s-1 (mg of protein)-1 (pHin 7.4, pHout 6.0, MVV voltage-clamped with K+/valinomycin, 23 degrees C), corresponding to a proton permeability coefficient of 0.02 cm/s, with an activation energy of 9.1 +/- 0.3 kcal/mol. JH was inhibited 20% by dihydro-4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (H2DIDS) with KI = 8 microM [( Cl-]out = 0 mM). For a 0.5-unit pH gradient JH increased from 1.5 to 4.6 nequiv s-1 (mg of protein)-1 as the internal MVV pH was increased (5.5-7.5). External Cl-, Br-, and I- (but not SO4(2-) and PO4-) increased JH 1.3-2.5-fold for both inwardly and outwardly directed pH gradients with KD = 1.0 +/- 0.4 mM (Br-) and greater than 100 mM (Cl-). This increase was blocked by 100 microM H2DIDS but not by amiloride or furosemide. Internal Cl- did not alter JH induced by pH gradients nor were proton fluxes induced by anion gradients in the absence of a pH gradient. Experiments in which JH was driven by membrane potentials (induced by valinomycin and K+ gradients) indicated that proton transport was voltage-sensitive. These experiments demonstrate a stilbene-sensitive electrogenic proton transport mechanism in MVV that is regulated allosterically by anions at an external binding site.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验