Chen Wenxiang, Liu Wenjing, Jiang Yijie, Zhang Mingliang, Song Naixin, Greybush Nicholas J, Guo Jiacen, Estep Anna K, Turner Kevin T, Agarwal Ritesh, Kagan Cherie R
ACS Nano. 2018 Nov 27;12(11):10683-10692. doi: 10.1021/acsnano.8b04889. Epub 2018 Sep 26.
Optical metasurfaces promise ultrathin, lightweight, miniaturized optical components with outstanding capabilities to manipulate the amplitude, phase, and polarization of light compared to conventional, bulk optics. The emergence of reconfigurable metasurfaces further integrates dynamic tunability with optical functionalities. Here, we report a structurally reconfigurable, optical metasurface constructed by integrating a plasmonic lattice array in the gap between a pair of symmetric microrods that serve to locally amplify the strain created on an elastomeric substrate by an external mechanical stimulus. The strain on the metasurface is amplified by a factor of 1.5-15.9 relative to the external strain by tailoring the microrod geometry. For the highest strain amplification geometry, the mechano-sensitivity of the optical responses of the plasmonic lattice array is a factor of 10 greater than that of state-of-the-art stretchable plasmonic resonator arrays. The spatial arrangement and therefore the optical response of the plasmonic lattice array are reversible, showing little hysteresis.
与传统的体光学相比,光学超表面有望实现超薄、轻质、小型化的光学元件,具备出色的光振幅、相位和偏振操纵能力。可重构超表面的出现进一步将动态可调性与光学功能集成在一起。在此,我们报告了一种结构可重构的光学超表面,它通过在一对对称微棒之间的间隙中集成等离子体晶格阵列构建而成,该微棒用于局部放大外部机械刺激在弹性体基板上产生的应变。通过调整微棒几何形状,超表面上的应变相对于外部应变放大了1.5至15.9倍。对于最高应变放大几何形状,等离子体晶格阵列光学响应的机械灵敏度比最先进的可拉伸等离子体谐振器阵列高10倍。等离子体晶格阵列的空间排列以及因此产生的光学响应是可逆的,几乎没有滞后现象。