Suppr超能文献

心电图信号的特征提取。

Feature extraction of ECG signal.

作者信息

Chandra Shanti, Sharma Ambalika, Singh Girish Kumar

机构信息

a Department of Electrical Engineering , Indian Institute of Technology , Roorkee , India.

出版信息

J Med Eng Technol. 2018 May;42(4):306-316. doi: 10.1080/03091902.2018.1492039. Epub 2018 Sep 25.

Abstract

This paper deals with new approaches to analyse electrocardiogram (ECG) signals for extracting useful diagnostic features. Initially, elimination of different types of noise is carried out using maximal overlap discrete wavelet transform (MODWT) and universal thresholding. Next, R-peak fiducial points are detected from these noise free ECG signals using discrete wavelet transform along with thresholding. Then, extraction of other features, viz., Q waves, S waves, P waves, T waves, P wave onset and offset points, T wave onset and offset points, QRS onset and offset points are identified using some rule based algorithms. Eventually, other important features are computed using the above extracted features. The software developed for this purpose has been validated by extensive testing of ECG signals acquired from the MIT-BIH database. The resulting signals and tabular results illustrate the performance of the proposed method. The sensitivity, predictivity and error of beat detection are 99.98%, 99.97% and 0.05%, respectively. The performance of the proposed beat detection method is compared to other existing techniques, which shows that the proposed method is superior to other methods.

摘要

本文探讨了分析心电图(ECG)信号以提取有用诊断特征的新方法。首先,使用最大重叠离散小波变换(MODWT)和通用阈值法消除不同类型的噪声。接下来,利用离散小波变换和阈值法从这些无噪声的ECG信号中检测R波基准点。然后,使用一些基于规则的算法识别其他特征,即Q波、S波、P波、T波、P波起始点和终点、T波起始点和终点、QRS起始点和终点。最终,使用上述提取的特征计算其他重要特征。为此开发的软件已通过对从MIT-BIH数据库获取的ECG信号进行广泛测试而得到验证。所得信号和表格结果说明了所提方法的性能。心跳检测的灵敏度、预测性和误差分别为99.98%、99.97%和0.05%。将所提心跳检测方法的性能与其他现有技术进行了比较,结果表明所提方法优于其他方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验