Biomedical Engineering Group, Department of Electronics, Computer Science and Systems (DEIS), University of Bologna, I-40136 Bologna, Italy.
Biomed Eng Online. 2011 Apr 3;10:23. doi: 10.1186/1475-925X-10-23.
Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding.
This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT.
The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods.
The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.
自 1995 年 Li 等人首次提出基于小波变换(WT)的著名心电图(ECG)描绘器以来,人们对该方法进行了大量研究。它能够可靠地描绘主要波形成分(单相或双相 P 波、QRS 和单相或双相 T 波),这使其成为对动态心电图信号进行高效在线处理的合适候选方法。不幸的是,该方法的先前实现采用了平方根(RMS)或浮点代数等非线性运算符,这些运算符计算量很大。
本文提出了一种基于 WT 的 32 位整数线性代数在线 QRS 检测和单个导联 ECG 信号 P-QRS-T 波描绘的方法。
QRS 检测器性能在 MIT-BIH 心律失常数据库(109010 个标记心跳的灵敏度 Se = 99.77%,阳性预测值 P+ = 99.86%)和欧洲 ST-T 数据库(788050 个标记心跳的灵敏度 Se = 99.81%,阳性预测值 P+ = 99.56%)上进行了验证。ECG 描绘器在 QT 数据库上进行了验证,对于所有基准点(P 波起始、P 波峰值、P 波结束、QRS 起始、QRS 结束、T 波峰值、T 波结束),手动和自动标注之间的平均误差低于 1.5 个样本,并且平均标准差与其他已建立的方法相当。
尽管该算法基于整数线性代数构建,但结构简单,仍能可靠地检测 QRS 波并准确地描绘 ECG 波。