Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
School of Pharmacy, University of Nottingham, Nottingham, United Kingdom.
Biochim Biophys Acta Gen Subj. 2018 Dec;1862(12):2579-2589. doi: 10.1016/j.bbagen.2018.08.007. Epub 2018 Aug 6.
Xeroderma Pigmentosum (XP) is a disease caused by mutations in the nucleotide excision repair (NER) pathway. Patients with XP exhibit a high propensity to skin cancers and some subtypes of XP can even present neurological impairments. During NER, DDB2 (XPE), in complex with DDB1 (DDB-Complex), performs the DNA lesion recognition. However, not much is known about how mutations found in XP patients affect the DDB2 structure and complex assembly. Thus, we searched for structural evidence associated with the role of three naturally occurring mutations found in XPE patients: R273H, K244E, and L350P.
Each mutant was individually constructed and submitted to multiple molecular dynamics simulations, done in triplicate for each designed system. Additionally, Dynamic Residue Interaction Networks were designed for each system and analyzed parallel with the simulations.
DDB2 mutations promoted loss of flexibility in the overall protein structure, producing a different conformational behavior in comparison to the WT, especially in the region comprising residues 354 to 371. Furthermore, the DDB-complex containing the mutated forms of DDB2 showed distinct behaviors for each mutant: R273H displayed higher structural instability when complexed; L350P affected DDB1 protein-protein binding with DDB2; and K244E, altered the complex binding trough different ways than L350P.
The data gathered throughout the analyses helps to enlighten the structural basis for how naturally occurring mutations found in XPE patients impact on DDB2 and DDB1 function.
Our data influence not only on the knowledge of XP but on the DNA repair mechanisms of NER itself.
着色性干皮病(XP)是一种由核苷酸切除修复(NER)途径中的突变引起的疾病。XP 患者表现出皮肤癌的高倾向,某些亚型的 XP 甚至可以出现神经损伤。在 NER 过程中,DDB2(XPE)与 DDB1(DDB-Complex)形成复合物,执行 DNA 损伤识别。然而,对于 XP 患者中发现的突变如何影响 DDB2 结构和复合物组装,我们知之甚少。因此,我们寻找与 XPE 患者中发现的三种天然突变相关的结构证据:R273H、K244E 和 L350P。
分别构建每个突变体,并对每个设计系统进行多次分子动力学模拟,每个系统重复三次。此外,为每个系统设计了动态残基相互作用网络,并与模拟平行进行分析。
DDB2 突变导致整个蛋白质结构的灵活性丧失,与 WT 相比产生了不同的构象行为,特别是在包含残基 354 到 371 的区域。此外,包含 DDB2 突变形式的 DDB-Complex 表现出每个突变体的不同行为:R273H 与复合物结合时表现出更高的结构不稳定性;L350P 影响 DDB1 与 DDB2 的蛋白-蛋白结合;而 K244E 则以不同于 L350P 的方式改变复合物结合途径。
通过分析收集的数据有助于阐明 XPE 患者中发现的天然突变如何影响 DDB2 和 DDB1 功能的结构基础。
我们的数据不仅影响 XP 的知识,而且影响 NER 本身的 DNA 修复机制。