Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy.
Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy.
Biochim Biophys Acta Mol Basis Dis. 2018 Nov;1864(11):3629-3638. doi: 10.1016/j.bbadis.2018.08.032. Epub 2018 Aug 26.
Gyrate atrophy (GA) is a rare recessive disorder characterized by progressive blindness, chorioretinal degeneration and systemic hyperornithinemia. GA is caused by point mutations in the gene encoding ornithine δ-aminotransferase (OAT), a tetrameric pyridoxal 5'-phosphate-dependent enzyme catalysing the transamination of l-ornithine and α-ketoglutarate to glutamic-γ-semialdehyde and l-glutamate in mitochondria. More than 50 OAT variants have been identified, but their molecular and cellular properties are mostly unknown. A subset of patients is responsive to pyridoxine administration, although the mechanisms underlying responsiveness have not been clarified. Herein, we studied the effects of the V332M mutation identified in pyridoxine-responsive patients. The Val332-to-Met substitution does not significantly affect the spectroscopic and kinetic properties of OAT, but during catalysis it makes the protein prone to convert into the apo-form, which undergoes unfolding and aggregation under physiological conditions. By using the CRISPR/Cas9 technology we generated a new cellular model of GA based on HEK293 cells knock-out for the OAT gene (HEK-OAT_KO). When overexpressed in HEK-OAT_KO cells, the V332M variant is present in an inactive apodimeric form, but partly shifts to the catalytically-competent holotetrameric form in the presence of exogenous PLP, thus explaining the responsiveness of these patients to pyridoxine administration. Overall, our data represent the first integrated molecular and cellular analysis of the effects of a pathogenic mutation in OAT. In addition, we validated a novel cellular model for the disease that could prove instrumental to define the molecular defect of other GA-causing variants, as well as their responsiveness to pyridoxine and other putative drugs.
鸟氨酸氨甲酰基转移酶缺乏症(GA)是一种罕见的隐性遗传病,其特征为进行性失明、脉络膜视网膜变性和全身性高鸟氨酸血症。GA 是由编码鸟氨酸 δ-氨基转移酶(OAT)的基因突变引起的,该基因编码四聚体吡哆醛 5′-磷酸依赖性酶,催化线粒体内 l-鸟氨酸和 α-酮戊二酸的转氨基反应,生成谷氨酸-γ-半醛和 l-谷氨酸。已经鉴定出超过 50 种 OAT 变体,但它们的分子和细胞特性大多未知。一部分患者对吡哆醇治疗有反应,尽管其反应机制尚未阐明。在此,我们研究了在对吡哆醇有反应的患者中发现的 V332M 突变的影响。缬氨酸 332 到蛋氨酸的取代不会显著影响 OAT 的光谱和动力学特性,但在催化过程中,它使蛋白质容易转化为脱辅基形式,在生理条件下,该形式会展开并聚集。我们使用 CRISPR/Cas9 技术,基于敲除 OAT 基因的 HEK293 细胞(HEK-OAT_KO),构建了一种新的 GA 细胞模型。当在 HEK-OAT_KO 细胞中过表达时,V332M 变体以无活性的脱辅基二聚体形式存在,但在存在外源性 PLP 时,部分转变为催化活性的全酶四聚体形式,从而解释了这些患者对吡哆醇治疗的反应性。总的来说,我们的数据代表了对 OAT 中致病突变影响的首次综合分子和细胞分析。此外,我们验证了该疾病的一种新的细胞模型,这可能有助于确定其他引起 GA 的变体的分子缺陷,以及它们对吡哆醇和其他潜在药物的反应性。