Suppr超能文献

人脑调控伸手运动速度涉及的皮质和皮质下区域:一项 fMRI 研究。

Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study.

机构信息

Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.

出版信息

Hum Brain Mapp. 2019 Jan;40(1):151-162. doi: 10.1002/hbm.24361. Epub 2018 Sep 25.

Abstract

Reach movements are characterized by multiple kinematic variables that can change with age or due to medical conditions such as movement disorders. While the neural control of reach direction is well investigated, the elements of the neural network regulating speed (the nondirectional component of velocity) remain uncertain. Here, we used a custom made magnetic resonance (MR)-compatible arm movement tracking system to capture the real kinematics of the arm movements while measuring brain activation with functional magnetic resonance imaging to reveal areas in the human brain in which BOLD-activation covaries with the speed of arm movements. We found significant activation in multiple cortical and subcortical brain regions positively correlated with endpoint (wrist) speed (speed-related activation), including contralateral premotor cortex (PMC), supplementary motor area (SMA), thalamus (putative VL/VA nuclei), and bilateral putamen. The hand and arm regions of primary sensorimotor cortex (SMC) and a posterior region of thalamus were significantly activated by reach movements but showed a more binary response characteristics (movement present or absent) than with continuously varying speed. Moreover, a subregion of contralateral SMA also showed binary movement activation but no speed-related BOLD-activation. Effect size analysis revealed bilateral putamen as the most speed-specific region among the speed-related clusters whereas primary SMC showed the strongest specificity for movement versus non-movement discrimination, independent of speed variations. The results reveal a network of multiple cortical and subcortical brain regions that are involved in speed regulation among which putamen, anterior thalamus, and PMC show highest specificity to speed, suggesting a basal-ganglia-thalamo-cortical loop for speed regulation.

摘要

伸手运动的特征是多个运动学变量,这些变量可能随年龄或运动障碍等医学状况而变化。虽然已经很好地研究了伸手方向的神经控制,但调节速度(速度的无方向分量)的神经网络的要素仍然不确定。在这里,我们使用定制的磁共振(MR)兼容的手臂运动跟踪系统来捕获手臂运动的真实运动学,同时使用功能磁共振成像测量大脑激活,以揭示大脑中与手臂运动速度相关的 BOLD 激活的区域。我们发现多个皮质和皮质下脑区的显著激活与端点(手腕)速度呈正相关(与速度相关的激活),包括对侧运动前区(PMC)、辅助运动区(SMA)、丘脑(假定 VL/VA 核)和双侧壳核。初级感觉运动皮层(SMC)的手和手臂区域以及丘脑的一个后区域在伸手运动时被显著激活,但与连续变化的速度相比,其反应特征更具二元性(存在或不存在运动)。此外,对侧 SMA 的一个亚区也显示出二元运动激活,但没有与速度相关的 BOLD 激活。效应大小分析显示,双侧壳核是与速度相关的簇中最具速度特异性的区域,而初级 SMC 对运动与非运动的区分表现出最强的特异性,与速度变化无关。结果揭示了一个涉及速度调节的多个皮质和皮质下脑区网络,其中壳核、前丘脑和 PMC 对速度的特异性最高,表明速度调节的基底节-丘脑-皮质环路。

相似文献

1
Cortical and subcortical areas involved in the regulation of reach movement speed in the human brain: An fMRI study.
Hum Brain Mapp. 2019 Jan;40(1):151-162. doi: 10.1002/hbm.24361. Epub 2018 Sep 25.
3
Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
J Neuroradiol. 2013 Oct;40(4):267-80. doi: 10.1016/j.neurad.2012.10.001. Epub 2013 Feb 21.
5
Reappraisal of the motor role of basal ganglia: a functional magnetic resonance image study.
J Neurosci. 2003 Apr 15;23(8):3432-8. doi: 10.1523/JNEUROSCI.23-08-03432.2003.
6
Swallowing Preparation and Execution: Insights from a Delayed-Response Functional Magnetic Resonance Imaging (fMRI) Study.
Dysphagia. 2017 Aug;32(4):526-541. doi: 10.1007/s00455-017-9794-2. Epub 2017 Mar 30.
7
Identifying brain regions for integrative sensorimotor processing with ankle movements.
Exp Brain Res. 2005 Sep;166(1):31-42. doi: 10.1007/s00221-005-2335-5. Epub 2005 Jul 21.
8
Motor control in basal ganglia circuits using fMRI and brain atlas approaches.
Cereb Cortex. 2006 Feb;16(2):149-61. doi: 10.1093/cercor/bhi089. Epub 2005 Apr 27.
9
Laterality, somatotopy and reproducibility of the basal ganglia and motor cortex during motor tasks.
Brain Res. 2000 Oct 6;879(1-2):204-15. doi: 10.1016/s0006-8993(00)02749-9.
10
fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
Neuroimage. 2006 Aug 15;32(2):714-27. doi: 10.1016/j.neuroimage.2006.04.205. Epub 2006 Jun 22.

引用本文的文献

1
Can motion capture improve task-based fMRI studies of motor function post-stroke? A systematic review.
J Neuroeng Rehabil. 2025 Apr 3;22(1):70. doi: 10.1186/s12984-025-01611-1.
3
Emotional interference and attentional bias in compulsive sexual behaviors disorder - An fMRI study on heterosexual males.
J Behav Addict. 2024 Jul 4;13(3):791-806. doi: 10.1556/2006.2024.00033. Print 2024 Oct 4.
4
Glutamate levels across deep brain structures in patients with a psychotic disorder and its relation to cognitive functioning.
J Psychopharmacol. 2022 Apr;36(4):489-497. doi: 10.1177/02698811221077199. Epub 2022 Mar 4.
6
Abnormal changes in motor cortical maps in humans with spinal cord injury.
J Physiol. 2021 Nov;599(22):5031-5045. doi: 10.1113/JP281430. Epub 2021 Oct 14.
8
Brain Motor Network Changes in Parkinson's Disease: Evidence from Meta-Analytic Modeling.
Mov Disord. 2021 May;36(5):1180-1190. doi: 10.1002/mds.28468. Epub 2021 Jan 11.

本文引用的文献

1
An MR-compatible gyroscope-based arm movement tracking system.
J Neurosci Methods. 2017 Mar 15;280:16-26. doi: 10.1016/j.jneumeth.2017.01.015. Epub 2017 Jan 29.
2
Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates.
Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5. doi: 10.1073/pnas.1602413113. Epub 2016 Jun 28.
4
Orthogonalization of regressors in FMRI models.
PLoS One. 2015 Apr 28;10(4):e0126255. doi: 10.1371/journal.pone.0126255. eCollection 2015.
5
Functional and structural correlates of motor speed in the cerebellar anterior lobe.
PLoS One. 2014 May 6;9(5):e96871. doi: 10.1371/journal.pone.0096871. eCollection 2014.
6
Motor cortical control of movement speed with implications for brain-machine interface control.
J Neurophysiol. 2014 Jul 15;112(2):411-29. doi: 10.1152/jn.00391.2013. Epub 2014 Apr 9.
8
The organization of the human striatum estimated by intrinsic functional connectivity.
J Neurophysiol. 2012 Oct;108(8):2242-63. doi: 10.1152/jn.00270.2012. Epub 2012 Jul 25.
9
Minimal formulation of joint motion for biomechanisms.
Nonlinear Dyn. 2010 Oct 1;62(1):291-303. doi: 10.1007/s11071-010-9717-3.
10
Tuning curves for movement direction in the human visuomotor system.
J Neurosci. 2010 Oct 6;30(40):13488-98. doi: 10.1523/JNEUROSCI.2571-10.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验