Aitbekova Aisulu, Wu Liheng, Wrasman Cody J, Boubnov Alexey, Hoffman Adam S, Goodman Emmett D, Bare Simon R, Cargnello Matteo
Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis , Stanford University , Stanford , California 94305 , United States.
Stanford Synchrotron Radiation Lightsource , SLAC National Accelerator Laboratory , Menlo Park , California 94025 , United States.
J Am Chem Soc. 2018 Oct 24;140(42):13736-13745. doi: 10.1021/jacs.8b07615. Epub 2018 Oct 10.
CO reduction to higher value products is a promising way to produce fuels and key chemical building blocks while reducing CO emissions. The reaction at atmospheric pressure mainly yields CH via methanation and CO via the reverse water-gas shift (RWGS) reaction. Describing catalyst features that control the selectivity of these two pathways is important to determine the formation of specific products. At the same time, identification of morphological changes occurring to catalysts under reaction conditions can be crucial to tune their catalytic performance. In this contribution we investigate the dependency of selectivity for CO reduction on the size of Ru nanoparticles (NPs) and on support. We find that even at rather low temperatures (210 °C), oxidative pretreatment induces redispersion of Ru NPs supported on CeO and leads to a complete switch in the performance of this material from a well-known selective methanation catalyst to an active and selective RWGS catalyst. By utilizing in situ X-ray absorption spectroscopy, we demonstrate that the low-temperature redispersion process occurs via decomposition of the metal oxide phase with size-dependent kinetics, producing stable single-site RuO /CeO species strongly bound to the CeO support that are remarkably selective for CO production. These results show that reaction selectivity can be heavily dependent on catalyst structure and that structural changes of the catalyst can occur even at low temperatures and can go unseen in materials with less defined structures.
将一氧化碳还原为高价值产物是一种在减少一氧化碳排放的同时生产燃料和关键化学原料的有前景的方法。在大气压下的反应主要通过甲烷化产生甲烷,并通过逆水煤气变换(RWGS)反应产生一氧化碳。描述控制这两种途径选择性的催化剂特性对于确定特定产物的形成很重要。同时,确定反应条件下催化剂发生的形态变化对于调节其催化性能可能至关重要。在本论文中,我们研究了一氧化碳还原选择性对钌纳米颗粒(NPs)尺寸和载体的依赖性。我们发现,即使在相当低的温度((210^{\circ}C))下,氧化预处理也会导致负载在二氧化铈上的钌纳米颗粒重新分散,并使这种材料的性能从一种著名的选择性甲烷化催化剂完全转变为一种活性和选择性的逆水煤气变换催化剂。通过原位X射线吸收光谱,我们证明低温重新分散过程通过金属氧化物相的分解以尺寸依赖的动力学发生,产生与二氧化铈载体强烈结合的稳定单中心RuO₂/CeO₂物种,这些物种对一氧化碳的产生具有显著的选择性。这些结果表明反应选择性可能严重依赖于催化剂结构,并且催化剂的结构变化即使在低温下也可能发生,并且在结构不太明确的材料中可能不易被发现。