López-Rodríguez Sergio, Davó-Quiñonero Arantxa, Bailón-García Esther, Lozano-Castelló Dolores, Herrera Facundo C, Pellegrin Eric, Escudero Carlos, García-Melchor Max, Bueno-López Agustín
Departamento de Química Inorgánica, Universidad de Alicante, Carretera San Vicente del Raspeig s/n, E-03080 Alicante, Spain.
School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2, Ireland.
J Phys Chem C Nanomater Interfaces. 2021 Nov 25;125(46):25533-25544. doi: 10.1021/acs.jpcc.1c07537. Epub 2021 Nov 16.
This study addresses the yet unresolved CO methanation mechanism on a Ru/CeO catalyst by means of near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) complemented with periodic density functional theory (DFT) calculations. NAP-XPS results show that the switch from H to CO + H mixture oxidizes both the Ru and CeO phases at low temperatures, which is explained by the CO adsorption modes assessed by means of DFT on each representative surface. CO adsorption on Ru is dissociative and moderately endergonic, leading to polybonded Ru-carbonyl groups whose hydrogenation is the rate-determining step in the overall process. Unlike on Ru metal, CO can be strongly adsorbed as carbonates on ceria surface oxygen sites or on the reduced ceria at oxygen vacancies as carboxylates (CO ), resulting in the reoxidation of ceria. Carboxylates can then evolve as CO, which is released either via direct splitting at relatively low temperatures or through stable formate species at higher temperatures. DRIFTS confirm the great stability of formates, whose depletion relates with CO conversion in the reaction cell, while carbonates remain on the surface up to higher temperatures. CO generation on ceria serves as an additional reservoir of Ru-carbonyls, cooperating to the overall CO methanation process. Altogether, this study highlights the noninnocent role of the ceria support in the performance of Ru/CeO toward CO methanation.
本研究通过近常压X射线光电子能谱(NAP-XPS)和漫反射红外傅里叶变换光谱(DRIFTS),并辅以周期性密度泛函理论(DFT)计算,研究了Ru/CeO催化剂上尚未解决的CO甲烷化机理。NAP-XPS结果表明,从H切换到CO + H混合物在低温下会氧化Ru和CeO相,这可以通过DFT对每个代表性表面评估的CO吸附模式来解释。CO在Ru上的吸附是解离性的且适度吸热,导致形成多键合的Ru-羰基基团,其氢化是整个过程中的速率决定步骤。与在Ru金属上不同,CO可以作为碳酸盐强烈吸附在氧化铈表面氧位点上,或作为羧酸盐(CO)吸附在氧空位处的还原氧化铈上,导致氧化铈的再氧化。羧酸盐然后可以演变成CO,其在相对较低的温度下通过直接分解释放,或在较高温度下通过稳定的甲酸盐物种释放。DRIFTS证实了甲酸盐的高稳定性,其消耗与反应池中CO的转化有关,而碳酸盐在更高温度下仍保留在表面上。氧化铈上的CO生成作为Ru-羰基的额外来源,协同促进整个CO甲烷化过程。总之,本研究突出了氧化铈载体在Ru/CeO对CO甲烷化性能中的非无辜作用。