a Cell Line and Upstream Process Development , Waltham , USA.
b Technical Operations , ImmunoGen, Waltham , USA.
MAbs. 2019 Feb/Mar;11(2):335-349. doi: 10.1080/19420862.2018.1527665. Epub 2018 Oct 22.
The extent and pattern of glycosylation on therapeutic antibodies can influence their circulatory half-life, engagement of effector functions, and immunogenicity, with direct consequences to efficacy and patient safety. Hence, controlling glycosylation patterns is central to any drug development program, yet poses a formidable challenge to the bio-manufacturing industry. Process changes, which can affect glycosylation patterns, range from manufacturing at different scales or sites, to switching production process mode, all the way to using alternative host cell lines. In the emerging space of biosimilars development, often times all of these aspects apply. Gaining a deep understanding of the direction and extent to which glycosylation quality attributes can be modulated is key for efficient fine-tuning of glycan profiles in a stage appropriate manner, but establishment of such platform knowledge is time consuming and resource intensive. Here we report an inexpensive and highly adaptable screening system for comprehensive modulation of glycans on antibodies expressed in CHO cells. We characterize 10 media additives in univariable studies and in combination, using a design of experiments approach to map the design space for tuning glycosylation profile attributes. We introduce a robust workflow that does not require automation, yet enables rapid process optimization. We demonstrate scalability across deep wells, shake flasks, AMBR-15 cell culture system, and 2 L single-use bioreactors. Further, we show that it is broadly applicable to different molecules and host cell lineages. This universal approach permits fine-tuned modulation of glycan product quality, reduces development costs, and enables agile implementation of process changes throughout the product lifecycle.
治疗性抗体的糖基化程度和模式会影响其循环半衰期、效应功能的结合以及免疫原性,从而直接影响疗效和患者安全性。因此,控制糖基化模式是任何药物开发项目的核心,但对生物制造行业来说是一个巨大的挑战。可能影响糖基化模式的工艺变化范围从不同规模或地点的生产到生产工艺模式的切换,再到使用替代的宿主细胞系。在新兴的生物类似药开发领域,通常所有这些方面都适用。深入了解糖基化质量属性可以在多大程度上进行调节,对于以适当的方式高效微调聚糖谱是至关重要的,但建立这样的平台知识既耗时又耗资源。在这里,我们报告了一种用于全面调节 CHO 细胞表达的抗体上糖基化的廉价且高度适应性的筛选系统。我们使用实验设计方法在单变量研究和组合中对 10 种培养基添加剂进行了表征,以绘制用于调整糖基化谱属性的设计空间图。我们引入了一种稳健的工作流程,不需要自动化,但能够实现快速的工艺优化。我们证明了其在深孔板、摇瓶、AMBR-15 细胞培养系统和 2L 一次性生物反应器中的可扩展性。此外,我们还表明,它广泛适用于不同的分子和宿主细胞系。这种通用方法允许对糖基化产品质量进行精细调节,降低开发成本,并在整个产品生命周期中实现对工艺变化的灵活实施。