Suppr超能文献

痕量元素分析物:基于/通过实施自动化高通量痕量元素筛选对单克隆抗体 N-糖基化进行靶向优化。

Traces matter: Targeted optimization of monoclonal antibody N-glycosylation based on/by implementing automated high-throughput trace element screening.

机构信息

Pharmaceutical Biotech Production and Development, Roche Diagnostics GmbH, Pharmaceutical Biotech Production and Development, Penzberg, Germany.

Cell Culture Research, Roche Diagnostics GmbH, Cell Culture Research, Pharma Research and Early Development, Roche Innovation Center Munich, pRED, LMR, Penzberg, Germany.

出版信息

Biotechnol Prog. 2020 Nov;36(6):e3042. doi: 10.1002/btpr.3042. Epub 2020 Jul 29.

Abstract

The use of high-throughput systems in cell culture process optimization offers various opportunities in biopharmaceutical process development. Here we describe the potential for acceleration and enhancement of product quality optimization and de novo bioprocess design regarding monoclonal antibody N-glycosylation by using an iterative statistical Design of Experiments (DoE) strategy based on our automated microtiter plate-based system for suspension cell culture. In our example, the combination of an initial screening of trace metal building blocks with a comprehensive DoE-based screening of 13 different trace elemental ions at three concentration levels in one run revealed most effective levers for N-glycan processing and biomass formation. Obtained results served to evaluate optimal concentration ranges and the right supplementation timing of relevant trace elements at shake flask and 2 L bioreactor scale. This setup identified manganese, copper, zinc, and iron as major factors. Manganese and copper acted as inverse key players in N-glycosylation, showing a positive effect of manganese and a negative effect of copper on glycan maturation in a zinc-dependent manner. Zinc and iron similarly improved cell growth and biomass formation. These findings allowed determining optimal concentration ranges for all four trace elements to establish control on desired product quality attributes regarding premature afucosylated and mature galactosylated glycan species. Our results demonstrates the power of combining robotics with DoE screening to enhance product quality optimization and to improve process understanding, thus, enabling targeted product quality control.

摘要

在细胞培养过程优化中使用高通量系统为生物制药工艺开发提供了各种机会。在这里,我们描述了通过使用基于自动化微量板的悬浮细胞培养系统的迭代统计实验设计(DoE)策略,加速和增强单克隆抗体 N-糖基化产品质量优化和从头生物工艺设计的潜力。在我们的示例中,初始筛选痕量金属构建块与在一个运行中综合筛选 13 种不同痕量元素离子的三个浓度水平的综合 DoE 筛选相结合,揭示了用于 N-聚糖加工和生物质形成的最有效方法。获得的结果用于评估在摇瓶和 2 L 生物反应器规模下相关痕量元素的最佳浓度范围和正确补充时间。该设置确定了锰、铜、锌和铁为主要因素。锰和铜作为 N-糖基化的反向关键因素,以锌依赖的方式显示出锰的积极作用和铜的消极作用对聚糖成熟的影响。锌和铁同样可以改善细胞生长和生物量的形成。这些发现确定了所有四种痕量元素的最佳浓度范围,以控制所需的产品质量属性,即过早去岩藻糖基化和成熟半乳糖基化聚糖种类。我们的结果证明了将机器人技术与 DoE 筛选相结合的强大功能,以增强产品质量优化并提高工艺理解,从而实现有针对性的产品质量控制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验