Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
Adv Mater. 2018 Nov;30(46):e1803961. doi: 10.1002/adma.201803961. Epub 2018 Sep 25.
Human eyes undertake the majority of information assimilation for learning and memory. Transduction of the color and intensity of the incident light into neural signals is the main process for visual perception. Besides light-sensitive elements that function as rods and cones, artificial retinal systems require neuromorphic devices to transform light stimuli into post-synaptic signals. In terms of plasticity timescale, synapses with short-term plasticity (STP) and long-term potentiation (LTP) represent the neural foundation for experience acquisition and memory formation. Currently, electrochemical transistors are being researched as STP-LTP devices. However, their LTP timescale is confined to a second-to-minute level to give unreliable non-volatile memory. This issue limits multiple-plasticity synapses with tunable temporal characteristics and efficient sensory-memory systems. Herein, a ferroelectric/electrochemical modulated organic synapse is proposed, attaining three prototypes of plasticity: STP/LTP by electrochemical doping/de-doping and ferroelectric-LTP from dipole switching. The device supplements conventional electrochemical transistors with 10000-second-persistent non-volatile plasticity and unique threshold switching properties. As a proof-of-concept for an artificial visual-perception system, an ultraflexible, light-triggered organic neuromorphic device (LOND) is constructed by this synapse. The LOND transduces incident light signals with different frequency, intensity, and wavelength into synaptic signals, both volatile and non-volatile.
人类眼睛承担了学习和记忆过程中大部分的信息吸收任务。将入射光的颜色和强度转换为神经信号是视觉感知的主要过程。除了作为视杆和视锥的光敏元件外,人工视网膜系统还需要神经形态器件将光刺激转化为突触后信号。就可塑性时间尺度而言,具有短期可塑性 (STP) 和长时程增强 (LTP) 的突触代表了经验获取和记忆形成的神经基础。目前,电化学晶体管被研究为 STP-LTP 器件。然而,它们的 LTP 时间尺度限于秒到分钟的范围,导致不可靠的非易失性记忆。这个问题限制了具有可调时间特性和高效感觉记忆系统的多可塑性突触。在此,提出了一种铁电/电化学调制的有机突触,实现了三种可塑性原型:电化学掺杂/去掺杂的 STP/LTP 和偶极子开关的铁电-LTP。该器件通过 10000 秒持久的非易失性可塑性和独特的阈值开关特性补充了传统的电化学晶体管。作为人工视觉感知系统的概念验证,通过该突触构建了超柔韧、光触发的有机神经形态器件 (LOND)。LOND 将不同频率、强度和波长的入射光信号转换为易失性和非易失性的突触信号。