Department of Biology and Institute of Theoretical and Mathematical Ecology, University of Miami, 1301 Memorial Dr., Coral Gables, FL 33133, USA.
Department of Biology and Institute of Theoretical and Mathematical Ecology, University of Miami, 1301 Memorial Dr., Coral Gables, FL 33133, USA.
J Theor Biol. 2019 Jan 7;460:115-124. doi: 10.1016/j.jtbi.2018.09.015. Epub 2018 Sep 22.
Carrying capacity, K, is a fundamental quantity in theoretical and applied ecology. When populations are distributed over space, carrying capacity becomes a complicated function of local, global and nearby environments, dispersal rate, and the relationship between population growth parameters, e.g., r and K. Expressions for the total carrying capacity, K, in an n-patch model that explicitly disentangle all of these factors are currently lacking. Therefore, here we derive K for a linear spatial array of n habitat patches with logistic growth and strong or weak random dispersal of individuals between adjacent patches. With strong dispersal, K depends on the mean r and K over all patches (〈r〉 and 〈K〉), the among-patch variance in K, and the linear regression coefficient of r on K, β. Strong dispersal increases K only if β > 〈r〉/〈K〉, which requires a positive convex or negative concave association between r and K, and decreases K if β < 〈r〉/〈K〉. Alternatively, weak dispersal increases K only if the within-patch covariance of r and K, cov(r, K) is greater than the spatial covariance between r and K, cov(r, K), defined as the average covariance between r in a focal patch and K in neighboring patches. Unlike the strong dispersal limit, this condition depends not only on the magnitude of environmental heterogeneity, but explicitly on the spatial distribution of heterogeneity (i.e., habitat clustering). This work clarifies how the interaction between dispersal, habitat heterogeneity, and population growth parameters shape carrying capacity in spatial populations, with implications for species management, conservation and evolution.
容纳量 K 是理论和应用生态学中的一个基本数量。当种群分布在空间上时,容纳量成为一个复杂的函数,涉及局部、全球和附近环境、扩散率以及种群增长参数(如 r 和 K)之间的关系。目前缺乏明确分离所有这些因素的 n 斑块模型中总容纳量 K 的表达式。因此,在这里,我们推导出具有 logistic 增长和个体在相邻斑块之间强或弱随机扩散的线性空间排列的 n 个生境斑块的 K。在强扩散的情况下,K 取决于所有斑块上的平均 r 和 K(〈r〉和〈K〉)、K 的斑块间方差以及 r 对 K 的线性回归系数β。强扩散仅在β>〈r〉/〈K〉时增加 K,这需要 r 和 K 之间存在正凸或负凹关联,并且在β<〈r〉/〈K〉时降低 K。相反,弱扩散仅在 r 和 K 的斑块内协方差 cov(r, K)大于 r 和 K 之间的空间协方差 cov(r, K)时增加 K,后者定义为焦点斑块中 r 与相邻斑块中 K 之间的平均协方差。与强扩散极限不同,此条件不仅取决于环境异质性的大小,而且明确取决于异质性的空间分布(即生境聚类)。这项工作阐明了扩散、生境异质性和种群增长参数之间的相互作用如何塑造空间种群的容纳量,对物种管理、保护和进化具有重要意义。