Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, 07738, Ciudad de México, México.
Departamento de Física Aplicada, Universidad de Salamanca, 37008 Salamanca, Spain.
Phys Rev E. 2018 Aug;98(2-1):022130. doi: 10.1103/PhysRevE.98.022130.
We present a molecular dynamics simulation of a two-dimensional Carnot engine. The optimization of this engine is achieved through the velocity of the piston, allowing not only the optimization of power output but also some other figures of merit involving entropy production. The maximum power and maximum ecological efficiencies are computed. It is shown that the near ideal gas working substance displays an endoreversible Carnot-like engine behavior. This can be considered as a prove of the validity of the Carnot-like endoreversible model. An effective reversible cycle different than the Carnot one is obtained, in agreement with the endoreversible hypothesis flexibility. We compare the efficiencies stemming from an ideal gas approximation with those of the simulation, and then we propose a suitable approximation to an endoreversible heat engine and to a reversible Joule-Brayton cycle which fits very well to the simulation results. Finally, we show that the maximum ecological efficiency η=1-τ^{3/4}, which is also very close to the upper bound of the low-dissipation heat engine under maximum ecological (and Omega) conditions, is close for describing the dynamics of the simulated cycle under maximum power and maximum ecological conditions in the so-named heat engine operability region.
我们提出了一个二维卡诺热机的分子动力学模拟。通过活塞的速度来实现该热机的优化,不仅可以优化功率输出,还可以优化一些涉及熵产生的其他性能指标。计算了最大功率和最大生态效率。结果表明,近似理想气体工质表现出类似于卡诺的内可逆热机行为。这可以被认为是卡诺内可逆模型有效性的证明。得到了一个与卡诺循环不同的有效可逆循环,这与内可逆假设的灵活性一致。我们比较了来自理想气体近似的效率与模拟的效率,然后提出了一个适合内可逆热机和可逆焦耳-布雷顿循环的近似,该近似非常符合模拟结果。最后,我们表明,最大生态效率η=1-τ^{3/4},它也非常接近在最大生态(和 Omega)条件下低耗散热机的上限,非常适合描述在所谓的热机可操作性区域中最大功率和最大生态条件下模拟循环的动力学。