Suppr超能文献

种群丰度对大型随机生态系统稳定性的影响。

Effect of population abundances on the stability of large random ecosystems.

机构信息

Department of Ecology & Evolution, University of Chicago, Chicago, Illinois 60637, USA.

Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501, USA.

出版信息

Phys Rev E. 2018 Aug;98(2-1):022410. doi: 10.1103/PhysRevE.98.022410.

Abstract

Random matrix theory successfully connects the structure of interactions of large ecological communities to their ability to respond to perturbations. One of the most debated aspects of this approach is that so far studies have neglected the role of population abundances on stability. While species abundances are well studied and empirically accessible, studies on stability have so far failed to incorporate this information. Here we tackle this question by explicitly including population abundances in a random matrix framework. We derive an analytical formula that describes the spectrum of a large community matrix for arbitrary feasible species abundance distributions. The emerging picture is remarkably simple: while population abundances affect the rate to return to equilibrium after a perturbation, the stability of large ecosystems is uniquely determined by the interaction matrix. We confirm this result by showing that the likelihood of having a feasible and unstable solution in the Lotka-Volterra system of equations decreases exponentially with the number of species for stable interaction matrices.

摘要

随机矩阵理论成功地将大生态群落相互作用的结构与其对扰动的响应能力联系起来。这种方法最具争议的方面之一是,到目前为止,研究还忽视了种群丰度对稳定性的影响。虽然物种丰度的研究已经很深入,并且可以通过经验获得,但稳定性研究迄今为止未能纳入这一信息。在这里,我们通过在随机矩阵框架中明确包含种群丰度来解决这个问题。我们推导出了一个解析公式,用于描述任意可行的物种丰度分布的大群落矩阵的谱。结果非常简单:虽然种群丰度会影响扰动后恢复平衡的速度,但大型生态系统的稳定性仅由相互作用矩阵决定。我们通过表明在稳定相互作用矩阵的情况下,Lotka-Volterra 方程组中具有可行但不稳定解的可能性随物种数量呈指数下降,证实了这一结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验