Suppr超能文献

稀疏大洛特卡-沃尔泰拉生态系统的可行性。

Feasibility of sparse large Lotka-Volterra ecosystems.

机构信息

Laboratoire Paul Painlevé, UMR 8524, Université de Lille, Avenue Paul Langevin, Cité Scientifique, 59655, Villeneuve d'Ascq Cedex, France.

Laboratoire d'Informatique Gaspard Monge, UMR 8049, CNRS, Université Paris Est Marne-la-Vallée, 5, Boulevard Descartes, Champs-sur-Marne, 77454, Marne-la-Vallée Cedex 2, France.

出版信息

J Math Biol. 2022 Nov 14;85(6-7):66. doi: 10.1007/s00285-022-01830-3.

Abstract

Consider a large ecosystem (foodweb) with n species, where the abundances follow a Lotka-Volterra system of coupled differential equations. We assume that each species interacts with [Formula: see text] other species and that their interaction coefficients are independent random variables. This parameter d reflects the connectance of the foodweb and the sparsity of its interactions especially if d is much smaller that n. We address the question of feasibility of the foodweb, that is the existence of an equilibrium solution of the Lotka-Volterra system with no vanishing species. We establish that for a given range of d, namely [Formula: see text] or [Formula: see text] with an extra condition on the sparsity structure, there exists an explicit threshold depending on n and d and reflecting the strength of the interactions, which guarantees the existence of a positive equilibrium as the number of species n gets large. From a mathematical point of view, the study of feasibility is equivalent to the existence of a positive solution [Formula: see text] (component-wise) to the equilibrium linear equation: [Formula: see text]where [Formula: see text] is the [Formula: see text] vector with components 1 and [Formula: see text] is a large sparse random matrix, accounting for the interactions between species. The analysis of such positive solutions essentially relies on large random matrix theory for sparse matrices and Gaussian concentration of measure. The stability of the equilibrium is established. The results in this article extend to a sparse setting the results obtained by Bizeul and Najim in Bizeul and Najim (2021).

摘要

考虑一个具有 n 个物种的大型生态系统(食物网),其中丰度遵循耦合微分方程的Lotka-Volterra 系统。我们假设每个物种与 [Formula: see text] 个其他物种相互作用,并且它们的相互作用系数是独立的随机变量。这个参数 d 反映了食物网的连接度和相互作用的稀疏度,特别是如果 d 远小于 n。我们解决了食物网的可行性问题,即存在没有消失物种的 Lotka-Volterra 系统的平衡解。我们证明,对于给定的 d 范围,即 [Formula: see text] 或 [Formula: see text] ,外加稀疏结构的额外条件,存在一个显式的阈值,它取决于 n 和 d,并反映了相互作用的强度,保证了当物种数量 n 增大时存在正平衡点。从数学的角度来看,可行性的研究相当于存在一个正解 [Formula: see text] (分量-wise)到平衡线性方程:[Formula: see text]其中 [Formula: see text] 是 [Formula: see text] 维单位向量, [Formula: see text] 是一个大型稀疏随机矩阵,反映了物种之间的相互作用。这种正解的分析本质上依赖于稀疏矩阵的大随机矩阵理论和高斯测度集中。平衡的稳定性也得到了建立。本文的结果扩展了 Bizeul 和 Najim 在 Bizeul 和 Najim(2021)中得到的稀疏设置结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验