Suppr超能文献

从肌萎缩侧索硬化症的交替运动率任务中自动提取异常唇部运动特征。

Automatic extraction of abnormal lip movement features from the alternating motion rate task in amyotrophic lateral sclerosis.

作者信息

Rong Panying, Yunusova Yana, Richburg Brian, Green Jordan R

机构信息

a Department of Speech-Language-Hearing: Sciences and Disorders , University of Kansas , Lawrence , KS , USA.

b Department of Speech-Language Pathology , University of Toronto , Toronto , ON , Canada.

出版信息

Int J Speech Lang Pathol. 2018 Nov;20(6):610-623. doi: 10.1080/17549507.2018.1485739. Epub 2018 Sep 25.

Abstract

With the long-term goal to develop a clinically feasible tool for assessing articulatory involvement in ALS, we designed an algorithmic approach to automatically extract lip movement features during an alternating motion rate (AMR) task and assessed their efficacy for detecting and monitoring articulatory involvement in amyotrophic lateral sclerosis (ALS). Twenty three spatial, temporal, and spatiotemporal AMR features were extracted from 161 samples of lip movements (139 from participants with ALS; 22 from neurologically-intact participants). The diagnostic value of these features was assessed based on their (1) sensitivity for detecting early bulbar motor involvement, and (2) associations with accepted clinical measures of bulbar disease progression. Among all AMR features, two temporal features were the most affected - temporal variability and syllable frequency, which (1) showed large changes during early disease stages and (2) predicted the progression of bulbar motor involvement and speech intelligibility decline. Spatial features were in general, less sensitive to early bulbar motor involvement. The findings provided preliminary support for the algorithmic approach to quantifying articulatory features predictive of bulbar motor and speech decline in ALS. The differential disease effects on spatial and temporal AMR features might shed light on the mechanism of articulatory involvement during ALS progression.

摘要

为了开发一种临床上可行的工具来评估肌萎缩侧索硬化症(ALS)中的发音功能,我们设计了一种算法方法,用于在交替运动速率(AMR)任务期间自动提取嘴唇运动特征,并评估其在检测和监测肌萎缩侧索硬化症(ALS)发音功能方面的有效性。从161个嘴唇运动样本(139个来自ALS患者;22个来自神经功能正常的参与者)中提取了23个空间、时间和时空AMR特征。这些特征的诊断价值基于它们(1)检测早期延髓运动受累的敏感性,以及(2)与公认的延髓疾病进展临床指标的相关性进行评估。在所有AMR特征中,两个时间特征受影响最大——时间变异性和音节频率,它们(1)在疾病早期阶段显示出较大变化,并且(2)预测了延髓运动受累的进展和言语清晰度下降。空间特征总体上对早期延髓运动受累不太敏感。这些发现为量化预测ALS中延髓运动和言语衰退的发音特征的算法方法提供了初步支持。疾病对空间和时间AMR特征的不同影响可能有助于揭示ALS进展过程中发音功能受累的机制。

相似文献

10
Kinematics of disease progression in bulbar ALS.延髓性肌萎缩侧索硬化症疾病进展的运动学
J Commun Disord. 2010 Jan-Feb;43(1):6-20. doi: 10.1016/j.jcomdis.2009.07.003. Epub 2009 Jul 24.

引用本文的文献

3
Oral diadochokinetic markers of X-linked dystonia-parkinsonism.X 连锁型肌张力障碍-帕金森病的口腔交替运动标志物。
Parkinsonism Relat Disord. 2024 Mar;120:105991. doi: 10.1016/j.parkreldis.2024.105991. Epub 2024 Jan 4.

本文引用的文献

4
Speech and nonspeech: What are we talking about?言语与非言语:我们在谈论什么?
Int J Speech Lang Pathol. 2017 Aug;19(4):345-359. doi: 10.1080/17549507.2016.1221995. Epub 2016 Oct 5.
10
Bulbar and speech motor assessment in ALS: challenges and future directions.肌萎缩侧索硬化症的球部和言语运动评估:挑战与未来方向。
Amyotroph Lateral Scler Frontotemporal Degener. 2013 Dec;14(7-8):494-500. doi: 10.3109/21678421.2013.817585. Epub 2013 Jul 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验