Suppr超能文献

利用计算流体动力学清晰检测未破裂脑动脉瘤的薄壁区域

Clear Detection of Thin-Walled Regions in Unruptured Cerebral Aneurysms by Using Computational Fluid Dynamics.

作者信息

Kimura Hidehito, Taniguchi Masaaki, Hayashi Kosuke, Fujimoto Yosuke, Fujita Youichi, Sasayama Takashi, Tomiyama Akio, Kohmura Eiji

机构信息

Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan.

Department of Neurosurgery, Kobe University Graduate School of Medicine, Kobe, Japan.

出版信息

World Neurosurg. 2019 Jan;121:e287-e295. doi: 10.1016/j.wneu.2018.09.098. Epub 2018 Sep 22.

Abstract

OBJECTIVE

Thin-walled regions (TIWRs) within cerebral aneurysms have a high risk of rupture during surgical manipulation. Previous reports have demonstrated specific changes in the parameters of computational fluid dynamics in TIWRs; however, they have not been fully evaluated. We identified and investigated a novel parameter, wall shear stress vector cycle variation (WSSVV), with user-friendly software that could predict TIWRs.

METHODS

Twelve unruptured cerebral aneurysms were analyzed. TIWRs were defined as reddish areas compared with the normal-colored parent artery on intraoperative views. The position and orientation of these clinical images were adjusted to match the WSSVV color maps. TIWRs and thick-walled regions (TKWRs) were marked and compared with the corresponding regions on WSSVV maps. The default images obtained from WSSVV imaging required appropriate maximum color bar value (MCBV) adjustment for predicting TIWRs. Sensitivity and specificity analyses were performed by changing the MCBV from 300 to 700 at intervals of 100. With the optimal MCBV, the WSSVV values were quantitatively compared.

RESULTS

All of the selected 18 TIWRs and 16 TKWRs corresponded to low- and high-value regions of the WSSVV color maps at the adjusted MCBV, respectively. The mean optimal MCBV was 483.3 ± 167.50 (range, 300-700). According to receiver operating characteristic analysis, the best MCBV for predicting TIWRs was 500 (highest sensitivity, 0.89; specificity, 0.94). Under this condition, the quantitative values of the computational fluid dynamics color maps for TIWRs and TKWRs were significantly different (P < 0.01).

CONCLUSIONS

Low WSSVV values may indicate TIWRs within cerebral aneurysms.

摘要

目的

脑动脉瘤内的薄壁区域(TIWRs)在手术操作过程中具有较高的破裂风险。既往报道显示TIWRs的计算流体动力学参数有特定变化;然而,这些变化尚未得到充分评估。我们使用一款用户友好型软件识别并研究了一个新参数——壁面剪应力矢量循环变化(WSSVV),该软件能够预测TIWRs。

方法

对12个未破裂的脑动脉瘤进行分析。TIWRs在术中被定义为与正常颜色的载瘤动脉相比呈红色的区域。调整这些临床图像的位置和方向以匹配WSSVV彩色图。标记TIWRs和厚壁区域(TKWRs),并与WSSVV图上的相应区域进行比较。从WSSVV成像获得的默认图像需要进行适当的最大色条值(MCBV)调整以预测TIWRs。通过以100为间隔将MCBV从300改变到700进行敏感性和特异性分析。在最佳MCBV条件下,对WSSVV值进行定量比较。

结果

在调整后的MCBV下,所选的18个TIWRs和16个TKWRs分别对应于WSSVV彩色图的低值和高值区域。平均最佳MCBV为483.3±167.50(范围300 - 700)。根据受试者工作特征分析,预测TIWRs的最佳MCBV为500(最高敏感性为0.89;特异性为0.94)。在此条件下,TIWRs和TKWRs的计算流体动力学彩色图的定量值有显著差异(P < 0.01)。

结论

低WSSVV值可能表明脑动脉瘤内存在TIWRs。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验