State Key Laboratory of Membrane Biology, Biomedical pioneering innovation center (BIOPIC), School of Life Sciences, Peking University, Beijing 100871, China.
Analyst. 2018 Oct 22;143(21):5161-5169. doi: 10.1039/c8an01223g.
The BiFC (bimolecular fluorescence complementation) assay and BiFC combined with FRET (fluorescence resonance energy transfer) technique have become important tools for molecular interaction studies in live cells. However, the real detection and cellular imaging performances of most existing red fluorescent protein-derived BiFC assays still suffer from relatively low ensemble brightness, high cytotoxicity, the red fluorescent proteins being prone-to-aggregation or severe residual dimerization, inefficient complementation and slow maturation at 37 °C physiological temperature in live mammalian cells. We developed a BiFC assay based on a recently evolved truly monomeric red fluorescent protein (FP) mScarlet-I with excellent cellular performances such as low cytotoxicity, fast and efficient chromophore maturation and the highest in-cell brightness among all previously reported monomeric red fluorescent proteins. In this work, a classic β-Fos/β-Jun constitutive heterodimerization model and a rapamycin-inducible FRB/FKBP interaction system were used to establish and test the performance of the mScarlet-I-based BiFC assay in live mammalian cells. Furthermore, simply by adopting the large-Stokes-shift fluorescent protein mAmetrine as the donor, β-Jun-β-Fos-NFAT1 ternary protein complex formation could be readily and efficiently detected and visualized with minimal spectral cross-talk in live HeLa cells by combining live-cell sensitized-emission FRET measurement with the mScarlet-I-based BiFC assay. The currently established BiFC assay in this work was also shown to be able to detect and visualize various protein-protein interactions (PPIs) at different subcellular compartments with high specificity and sensitivity at 37 °C physiological temperature in live mammalian cells.
双分子荧光互补(BiFC)测定法和 BiFC 与荧光共振能量转移(FRET)技术相结合,已成为活细胞中分子相互作用研究的重要工具。然而,大多数现有的基于红色荧光蛋白的 BiFC 测定法的实际检测和细胞成像性能仍然存在整体亮度较低、细胞毒性高、红色荧光蛋白易于聚集或严重残留二聚化、在活哺乳动物细胞中 37°C 生理温度下互补效率低和成熟缓慢等问题。我们开发了一种基于最近进化而来的真正单体红色荧光蛋白(FP)mScarlet-I 的 BiFC 测定法,该蛋白具有良好的细胞性能,如低细胞毒性、快速高效的生色团成熟和所有先前报道的单体红色荧光蛋白中最高的细胞内亮度。在这项工作中,使用经典的β-Fos/β-Jun 组成型异二聚化模型和雷帕霉素诱导的 FRB/FKBP 相互作用系统,在活哺乳动物细胞中建立并测试了基于 mScarlet-I 的 BiFC 测定法的性能。此外,通过简单地采用大斯托克斯位移荧光蛋白 mAmetrine 作为供体,通过将活细胞敏化发射 FRET 测量与基于 mScarlet-I 的 BiFC 测定法相结合,可在活 HeLa 细胞中以最小的光谱串扰,轻松有效地检测和可视化 rapamycin 诱导的 FRB/FKBP 相互作用系统和β-Jun-β-Fos-NFAT1 三元蛋白复合物的形成。本工作中建立的 BiFC 测定法还能够在活哺乳动物细胞中以高特异性和灵敏度在 37°C 生理温度下检测和可视化不同亚细胞区室中的各种蛋白质-蛋白质相互作用(PPIs)。