Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada; email:
Annu Rev Physiol. 2019 Feb 10;81:561-583. doi: 10.1146/annurev-physiol-021317-121527. Epub 2018 Sep 26.
Comparative physiology studies of high-altitude species provide an exceptional opportunity to understand naturally evolved mechanisms of hypoxia resistance. Aerobic capacity (VOmax) is a critical performance trait under positive selection in some high-altitude taxa, and several high-altitude natives have evolved to resist the depressive effects of hypoxia on VOmax. This is associated with enhanced flux capacity through the O transport cascade and attenuation of the maladaptive responses to chronic hypoxia that can impair O transport. Some highlanders exhibit elevated rates of carbohydrate oxidation during exercise, taking advantage of its high ATP yield per mole of O. Certain highland native animals have also evolved more oxidative muscles and can sustain high rates of lipid oxidation to support thermogenesis. The underlying mechanisms include regulatory adjustments of metabolic pathways and to gene expression networks. Therefore, the evolution of hypoxia resistance in high-altitude natives involves integrated functional changes in the pathways for O and substrate delivery and utilization by mitochondria.
高海拔物种的比较生理学研究为了解缺氧抗性的自然进化机制提供了绝佳的机会。在一些高海拔分类群中,有氧能力(VOmax)是一个受到正向选择的关键性能特征,并且一些高海拔本地物种已经进化出抵抗缺氧对 VOmax 的抑制作用的机制。这与通过 O 运输级联的通量能力增强以及对慢性缺氧的适应不良反应的衰减有关,慢性缺氧会损害 O 运输。一些高原居民在运动过程中表现出较高的碳水化合物氧化率,利用其每摩尔 O 的高 ATP 产率。某些高原本地动物也进化出了更具氧化能力的肌肉,可以维持高脂质氧化率以支持产热。潜在的机制包括代谢途径和基因表达网络的调节调整。因此,高海拔本地物种对缺氧的抗性的进化涉及到 O 和底物输送以及线粒体利用途径的综合功能变化。