Szabó László, Imanishi Sari, Kawashima Naohiro, Hoshino Rina, Hirose Daisuke, Tsukegi Takayuki, Ninomiya Kazuaki, Takahashi Kenji
Institute of Science and Engineering Kanazawa University Kakuma-machi Kanazawa 920-1192 Japan.
Innovative Composite Center Kanazawa Institute of Technology 2-2 Yatsukaho Hakusan 924-0838 Japan.
ChemistryOpen. 2018 Sep 24;7(9):720-729. doi: 10.1002/open.201800180. eCollection 2018 Sep.
Given our possible future dependence on carbon fiber reinforced composites, the introduction of a renewable matrix might be advantageous for the vision of a sustainable world. Cellulose is a superior green candidate and provides exceptional freedom in composite design as the free OH groups can be conveniently functionalized to give tailor-made materials. To obtain a high-performing carbon fiber reinforced cellulose propionate composite, we accurately tailored the interfacial adhesion by invoking click chemistry. The synthetic strategy involved grafting of a phenylacetylene structure onto the carbon fiber surface, onto which -acylated 6-azido-6-deoxycellulose and a number of aromatic azides could be covalently attached. Single-fiber fragmentation tests indicated that the lipophilicity and size of the substituent on the deposited structure played a crucial role in determining molecular entanglement and mechanical interlocking effects, as penetration into the cellulose propionate matrix was of utmost importance. Enhanced interfacial shear strength was obtained for the carbon fiber covalently functionalized with the cellulose derivative. Nevertheless, the greatest increase was observed for the derivative substituted with a compact and highly lipophilic CF substituent. In a broader sense, our study provides a synthetic platform to bind cellulose derivatives to graphitic surfaces and paves the ways towards the preparation of innovative cellulose-based carbonaceous materials.
考虑到我们未来可能对碳纤维增强复合材料的依赖,引入可再生基体对于可持续发展世界的愿景可能是有利的。纤维素是一种优质的绿色候选材料,由于其游离羟基可方便地进行官能化以制备定制材料,因此在复合材料设计中提供了极大的自由度。为了获得高性能的碳纤维增强丙酸纤维素复合材料,我们通过点击化学精确地调整了界面粘附力。合成策略包括将苯乙炔结构接枝到碳纤维表面,在该表面上可以共价连接酰化的6-叠氮基-6-脱氧纤维素和多种芳香族叠氮化物。单纤维断裂试验表明,沉积结构上取代基的亲脂性和大小在决定分子缠结和机械联锁效应方面起着关键作用,因为渗透到丙酸纤维素基体中至关重要。用纤维素衍生物共价官能化的碳纤维获得了增强的界面剪切强度。然而,对于用紧密且高度亲脂的CF取代基取代的衍生物,观察到的增加最大。从更广泛的意义上讲,我们的研究提供了一个将纤维素衍生物与石墨表面结合的合成平台,并为制备创新的纤维素基含碳材料铺平了道路。