Kuhlmann Uwe, Maierhofer Andreas, Canaud Bernard, Hoyer Joachim, Gross Malte
Klinikum Bremen Mitte, Medizinische Klinik III, Bremen, Germany.
Fresenius Medical Care GmbH, Bad Homburg, Germany.
Artif Organs. 2019 Feb;43(2):150-158. doi: 10.1111/aor.13328. Epub 2018 Sep 27.
Restoring and controlling fluid volume homeostasis is still a challenge in contemporary end-stage kidney disease patients treated by intermittent hemodialysis (HD) or hemodiafiltration (HDF). This primary target is achieved by ultrafiltration (dry weight probing) and control of intradialytic sodium transfer (dialysate-plasma Na gradient). The latter task is mostly ignored in clinical practice by applying a dialysate sodium prescription uniform for all patients of the dialysis center but unaligned to individual plasma sodium levels. Depending on the patient's natremia, a positive gradient gives rise to intradialytic diffusive sodium load and postdialytic thirst. On the contrary, a negative gradient may cause unwanted diffusive sodium removal and intradialytic symptoms. To overcome these challenges, a new conductivity-based electrolyte balancing algorithm embedded in a hemodialysis machine with the aim to achieve "zero diffusive sodium balance" in HD and online HDF treatments was tested in the form of a prospective clinical trial. The study comprised two phases: a first phase with a conventional fixed-sodium dialysate (standard care phase), followed by a phase with the electrolyte balancing control (EBC) module activated (controlled care phase). The results show a reduction in the variability of the intradialytic plasma sodium concentration shift, but it is overlain by a small but statistically significant increase in the mean plasma sodium levels. However, no clinical manifestations were observed. This sodium load can be explained by the design of the algorithm based on dialysate conductivity instead of sodium concentration. Furthermore, the increase in plasma sodium can be corrected by taking into account the potassium shift during the treatment. This study showed that the EBC module incorporated in the HD machine is able to automatically individualize the dialysate sodium to the patient's plasma sodium without measuring or calculating predialytic plasma levels from previous laboratory tests. This tool has the potential to facilitate fluid management, to control diffusive sodium flux, and to improve intradialytic tolerance in daily clinical practice.
对于接受间歇性血液透析(HD)或血液透析滤过(HDF)治疗的当代终末期肾病患者而言,恢复并控制液体容量平衡仍是一项挑战。这一主要目标通过超滤(干体重探测)以及控制透析过程中的钠转运(透析液 - 血浆钠梯度)来实现。在临床实践中,后一项任务大多被忽视,因为透析中心对所有患者都采用统一的透析液钠处方,而未与个体血浆钠水平相匹配。根据患者的血钠情况,正梯度会导致透析过程中的钠扩散负荷以及透析后口渴。相反,负梯度可能导致不必要的钠扩散清除以及透析过程中的症状。为克服这些挑战,一种新的基于电导率的电解质平衡算法被嵌入血液透析机中,旨在在HD和在线HDF治疗中实现“零钠扩散平衡”,并以前瞻性临床试验的形式进行了测试。该研究包括两个阶段:第一阶段采用传统的固定钠透析液(标准护理阶段),随后是激活电解质平衡控制(EBC)模块的阶段(对照护理阶段)。结果显示,透析过程中血浆钠浓度变化的变异性有所降低,但平均血浆钠水平有小幅但具有统计学意义的升高。然而,未观察到临床表现。这种钠负荷可以通过基于透析液电导率而非钠浓度的算法设计来解释。此外,考虑到治疗过程中的钾转移,可以纠正血浆钠的升高。这项研究表明,HD机器中集成的EBC模块能够在不通过先前实验室检测测量或计算透析前血浆水平的情况下,自动根据患者的血浆钠调整透析液钠。该工具在日常临床实践中具有促进液体管理、控制钠扩散通量以及提高透析耐受性的潜力。