School of Science, Shandong Jiaotong University, Jinan, China.
Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
Proteins. 2018 Dec;86(12):1294-1305. doi: 10.1002/prot.25610. Epub 2018 Oct 30.
Recently, allosteric regulations of HIV-1 protease (PR) are suggested as a promising approach to relieve drug resistance of mutations toward inhibitors targeting the active site of PR. Replica-exchange molecular dynamics (REMD) simulations and normal mode analysis (NMA) are integrated to enhance conformational sampling of PR. Molecular mechanics generalized Born surface area (MM-GBSA) method was applied to calculate binding free energies of three inhibitors APV, DRV, and NIT to the wild-type (WT) and multidrug resistance (MDR) PRs. The results suggest that binding free energies of APV and DRV are decreased in the MDR PR relative to the WT PR, suggesting drug resistance of mutations on these two inhibitors. However, the binding ability of the allosteric inhibitor NIT is not impaired in the MDR PR. In addition, internal dynamics analysis based on REMD simulations proves that mutations hardly produce obvious effect on the conformation of the MDR PR in comparison to the WT PR. Scanning of hydrophobic contacts and hydrogen bond contacts of inhibitors with residues of PRs on the concatenated trajectories of REMD demonstrates that mutations change the symmetric interaction networks of APV and DRV with PR, but do not generate obvious influence on the asymmetric interaction network of NIT with PR. In summary, allosteric inhibitor NIT can adapt the MDR PR better than those inhibitors toward the active site of PR, thus allosteric inhibitors of PR may be a possible channel to overcome drug resistance of PR.
最近,HIV-1 蛋白酶 (PR) 的别构调节被认为是一种有前途的方法,可以缓解针对 PR 活性位点抑制剂的突变引起的耐药性。 replica-exchange 分子动力学 (REMD) 模拟和正常模式分析 (NMA) 被整合以增强 PR 的构象采样。分子力学广义 Born 表面积 (MM-GBSA) 方法被用于计算三种抑制剂 APV、DRV 和 NIT 与野生型 (WT) 和多药耐药 (MDR) PR 的结合自由能。结果表明,与 WT PR 相比,APV 和 DRV 的结合自由能在 MDR PR 中降低,表明这些两种抑制剂的突变产生了耐药性。然而,别构抑制剂 NIT 的结合能力在 MDR PR 中没有受损。此外,基于 REMD 模拟的内部动力学分析证明,与 WT PR 相比,突变几乎不会对 MDR PR 的构象产生明显影响。在 REMD 的串联轨迹上对抑制剂与 PR 残基的疏水接触和氢键接触进行扫描表明,突变改变了 APV 和 DRV 与 PR 的对称相互作用网络,但对 NIT 与 PR 的不对称相互作用网络没有明显影响。总之,别构抑制剂 NIT 可以更好地适应 MDR PR,而不是那些针对 PR 活性位点的抑制剂,因此 PR 的别构抑制剂可能是克服 PR 耐药性的一个可能途径。