Li Xing, Zhang Kangjia, Mitlin David, Paek Eunsu, Wang Mingshan, Jiang Fei, Huang Yun, Yang Zhenzhong, Gong Yue, Gu Lin, Zhao Wengao, Du Yingge, Zheng Jianming
The Center of New Energy Materials and Technology, Southwest Petroleum University, Chengdu, Sichuan, 610500, China.
Chemical & Biomolecular Engineering, Clarkson University, Potsdam, NY, 13699, USA.
Small. 2018 Oct;14(40):e1802570. doi: 10.1002/smll.201802570. Epub 2018 Sep 9.
Lithium-rich Li[Li Fe Ni Mn ]O (0.4Li MnO -0.6LiFe Ni Mn O , LFNMO) is a new member of the xLi MnO ·(1 - x)LiMO family of high capacity-high voltage lithium-ion battery (LIB) cathodes. Unfortunately, it suffers from the severe degradation during cycling both in terms of reversible capacity and operating voltage. Here, the corresponding degradation occurring in LFNMO at an atomic scale has been documented for the first time, using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), as well as tracing the elemental crossover to the Li metal anode using X-ray photoelectron spectroscopy (XPS). It is also demonstrated that a cobalt phosphate surface treatment significantly boosts LFNMO cycling stability and rate capability. Due to cycling, the unmodified LFNMO undergoes extensive elemental dissolution (especially Mn) and O loss, forming Kirkendall-type voids. The associated structural degradation is from the as-synthesized R-3m layered structure to a disordered rock-salt phase. Prior to cycling, the cobalt phosphate coating is epitaxial, sharing the crystallography of the parent material. During cycling, a 2-3 nm thick disordered Co-rich rock-salt structure is formed as the outer shell, while the bulk material retains R-3m crystallography. These combined cathode-anode findings significantly advance the microstructural design principles for next-generation Li-rich cathode materials and coatings.
富锂Li[LiFeNiMn]O(0.4LiMnO - 0.6LiFeNiMnO,LFNMO)是高容量 - 高电压锂离子电池(LIB)阴极的xLiMnO·(1 - x)LiMO家族的新成员。不幸的是,它在循环过程中在可逆容量和工作电压方面都遭受严重降解。在此,首次使用高角度环形暗场扫描透射电子显微镜(HAADF - STEM)记录了LFNMO在原子尺度上发生的相应降解,并使用X射线光电子能谱(XPS)追踪元素向锂金属阳极的交叉。还证明了磷酸钴表面处理显著提高了LFNMO的循环稳定性和倍率性能。由于循环,未改性的LFNMO经历了广泛的元素溶解(特别是Mn)和氧损失,形成了柯肯达尔型空洞。相关的结构降解是从合成后的R - 3m层状结构转变为无序的岩盐相。在循环之前,磷酸钴涂层是外延的,与母体材料具有相同的晶体学。在循环过程中,形成了一个2 - 3纳米厚的无序富钴岩盐结构作为外壳,而块状材料保留R - 3m晶体学。这些阴极 - 阳极的综合发现显著推进了下一代富锂阴极材料和涂层的微观结构设计原则。