Lee Eunryeol, Wi Tae-Ung, Park Jaehyun, Park Sang-Wook, Kim Min-Ho, Lee Dae-Hyung, Park Byung-Chun, Jo Chiho, Malik Rahul, Lee Jong Hoon, Shin Tae Joo, Kang Seok Ju, Lee Hyun-Wook, Lee Jinhyuk, Seo Dong-Hwa
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Ulsan, 44919, Republic of Korea.
LG Energy Solution R&D Campus Daejeon, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea.
Adv Mater. 2023 Mar;35(13):e2208423. doi: 10.1002/adma.202208423. Epub 2023 Feb 7.
Understanding the local cation order in the crystal structure and its correlation with electrochemical performances has advanced the development of high-energy Mn-rich cathode materials for Li-ion batteries, notably Li- and Mn-rich layered cathodes (LMR, e.g., Li Ni Mn Co O ) that are considered as nanocomposite layered materials with C2/m Li MnO -type medium-range order (MRO). Moreover, the Li-transport rate in high-capacity Mn-based disordered rock-salt (DRX) cathodes (e.g., Li Mn Ti O ) is found to be influenced by the short-range order of cations, underlining the importance of engineering the local cation order in designing high-energy materials. Herein, the nanocomposite is revealed, with a heterogeneous nature (like MRO found in LMR) of ultrahigh-capacity partially ordered cathodes (e.g., Li Mn O F ) made of distinct domains of spinel-, DRX- and layered-like phases, contrary to conventional single-phase DRX cathodes. This multi-scale understanding of ordering informs engineering the nanocomposite material via Ti doping, altering the intra-particle characteristics to increase the content of the rock-salt phase and heterogeneity within a particle. This strategy markedly improves the reversibility of both Mn- and O-redox processes to enhance the cycling stability of the partially ordered DRX cathodes (nearly ≈30% improvement of capacity retention). This work sheds light on the importance of nanocomposite engineering to develop ultrahigh-performance, low-cost Li-ion cathode materials.
了解晶体结构中的局部阳离子排序及其与电化学性能的相关性,推动了用于锂离子电池的高能量富锰正极材料的发展,特别是富锂和富锰层状正极(LMR,例如LiNiMnCoO),它们被视为具有C2/m LiMnO型中程有序(MRO)的纳米复合层状材料。此外,发现高容量锰基无序岩盐(DRX)正极(例如LiMnTiO)中的锂传输速率受阳离子短程有序的影响,这突出了在设计高能量材料时调控局部阳离子排序的重要性。在此,揭示了一种纳米复合材料,它具有由尖晶石相、DRX相和层状相的不同区域组成的超高容量部分有序正极(例如LiMnO F)的异质性质(类似于LMR中发现的MRO),这与传统的单相DRX正极不同。这种对有序性的多尺度理解为通过Ti掺杂来设计纳米复合材料提供了依据,改变颗粒内部特性以增加岩盐相的含量和颗粒内的异质性。该策略显著提高了Mn和O氧化还原过程的可逆性,从而增强了部分有序DRX正极的循环稳定性(容量保持率提高了近约30%)。这项工作揭示了纳米复合工程对于开发超高性能、低成本锂离子正极材料的重要性。