Institute of Bioanalytical Chemistry , Saarland University , 66123 Saarbrücken , Germany.
Group for Computational Life Sciences , Ruđer Bošković Institute , 10000 Zagreb , Croatia.
Anal Chem. 2018 Nov 6;90(21):12592-12600. doi: 10.1021/acs.analchem.8b02740. Epub 2018 Oct 12.
Tissue-specific ion suppression is an unavoidable matrix effect in MALDI mass spectrometry imaging (MALDI-MSI), the negative impact of which on precision and accuracy in quantitative MALDI-MSI can be reduced to some extent by applying isotope internal standards for normalization and matrix-matched calibration routines. The detection sensitivity still suffers, however, often resulting in significant loss of signal for the investigated analytes. An MSI application considerably affected by this phenomenon is the quantitative spatial analysis of central nervous system (CNS) drugs. Most of these drugs are low molecular weight, lipophilic compounds, which exhibit inefficient desorption and ionization during MALDI using conventional polar acidic matrices (CHCA, DHB). Here, we present the application of the (2-[(2 E)-3-(4- tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile) matrix for high sensitivity imaging of CNS drugs in mouse brain sections. Since DCTB is usually described as an electron-transfer matrix, we provide a rationale (i.e., computational calculations of gas-phase proton affinity and ionization energy) for an additional proton-transfer ionization mechanism with this matrix. Furthermore, we compare the extent of signal suppression for five different CNS drugs when employing DCTB versus CHCA matrices. The results showed that the signal suppression was not only several times lower with DCTB than with CHCA but also depended on the specific tissue investigated. Finally, we present the application of DCTB and ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry to quantitative MALDI imaging of the anesthetic drug xylazine in mouse brain sections based on a linear matrix-matched calibration curve. DCTB afforded up to 100-fold signal intensity improvement over CHCA when comparing representative single MSI pixels and >440-fold improvement for the averaged mass spectrum of the adjacent tissue sections.
组织特异性离子抑制是基质辅助激光解吸电离质谱成像(MALDI-MSI)中不可避免的基质效应,通过应用同位素内标进行归一化和基质匹配校准程序,可以在一定程度上降低其对定量 MALDI-MSI 精度和准确性的负面影响。然而,检测灵敏度仍然受到影响,通常会导致研究分析物的信号显著损失。受这种现象影响较大的 MSI 应用之一是中枢神经系统(CNS)药物的定量空间分析。这些药物大多数为低分子量、亲脂性化合物,在使用常规极性酸性基质(CHCA、DHB)进行 MALDI 时,其解吸和离子化效率较低。在这里,我们介绍了(2-[[2E]-3-(4-叔丁基苯基)-2-甲基-2-丙烯基]丙二腈)基质在小鼠脑切片中 CNS 药物高灵敏度成像中的应用。由于 DCTB 通常被描述为电子转移基质,因此我们提供了一种额外的质子转移电离机制的基本原理(即气相质子亲和能和电离能的计算)。此外,我们比较了在使用 DCTB 与 CHCA 基质时,五种不同 CNS 药物的信号抑制程度。结果表明,DCTB 与 CHCA 相比,信号抑制不仅低几个数量级,而且还取决于具体研究的组织。最后,我们介绍了 DCTB 和超高分辨率傅里叶变换离子回旋共振质谱在基于线性基质匹配校准曲线的小鼠脑切片中麻醉药物唑拉西泮的定量 MALDI 成像中的应用。与代表性的单个 MSI 像素相比,DCTB 使信号强度提高了 100 倍,与相邻组织切片的平均质谱相比,提高了 440 倍以上。