School of Earth & Sustainability and Stockbridge School of Agriculture , University of Massachusetts , Amherst , Massachusetts 01003 , United States.
Earth and Environmental Sciences Area , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.
Environ Sci Technol. 2018 Nov 6;52(21):12349-12357. doi: 10.1021/acs.est.8b03791. Epub 2018 Oct 16.
The formation of reactive manganese (Mn) species is emerging as a key regulator of carbon oxidation rates, and thus CO emissions, in soils and sediments. Many subsurface environments are characterized by steep oxygen gradients, forming oxic-anoxic interfaces that enable rapid redox cycling of Mn. Here, we examined the impact of Mn(II) oxidation along oxic-anoxic interfaces on carbon oxidation in soils using laboratory-based diffusion reactors. A combination of cyclic voltammetry, X-ray absorption spectroscopy, and X-ray microprobe imaging revealed a tight coupling between Mn(II) oxidation and carbon oxidation at the oxic-anoxic interface. Specifically, zones of Mn(II) oxidation across the oxic-anoxic transition also exhibited the greatest lignin oxidation potential, carbon solubilization, and oxidation. Microprobe imaging further revealed that the generation of Mn(III)-dominated precipitates coincided with carbon oxidation. Combined, our findings demonstrate that biotic Mn(II) oxidation, specifically the formation of Mn(III) species, contributes to carbon oxidation along oxic-anoxic interfaces in soils and sediments. Our results suggest that we should regard carbon oxidation not merely as a function of molecular composition, which insufficiently predicts rates, but in relation to microenvironments favoring the formation of critically important oxidants such as Mn(III).
活性锰 (Mn) 物种的形成正成为调节土壤和沉积物中碳氧化速率进而调节 CO 排放的关键因素。许多地下环境的特点是氧梯度陡峭,形成好氧-缺氧界面,使 Mn 快速进行氧化还原循环。在这里,我们使用基于实验室的扩散反应器研究了好氧-缺氧界面处 Mn(II)氧化对土壤中碳氧化的影响。循环伏安法、X 射线吸收光谱和 X 射线微区成像的组合表明,在好氧-缺氧界面处 Mn(II)氧化与碳氧化之间存在紧密的耦合。具体来说,在好氧-缺氧过渡带的 Mn(II)氧化区也表现出最大的木质素氧化势、碳溶解和氧化。微区成像进一步表明,Mn(III)主导的沉淀物的生成与碳氧化同时发生。综上所述,我们的研究结果表明,生物 Mn(II)氧化,特别是 Mn(III)物种的形成,有助于土壤和沉积物中好氧-缺氧界面处的碳氧化。我们的研究结果表明,我们不应仅仅将碳氧化视为分子组成的函数,因为分子组成不足以预测速率,而应将其与有利于形成重要氧化剂(如 Mn(III))的微环境联系起来。