Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory , 1 Cyclotron Road , Berkeley , California 94720 , United States.
Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory , 7000 East Avenue , Livermore , California 94550 , United States.
Environ Sci Technol. 2018 Dec 18;52(24):14129-14139. doi: 10.1021/acs.est.8b03408. Epub 2018 Dec 7.
Oscillating redox conditions are a common feature of humid tropical forest soils, driven by an ample supply and dynamics of reductants, high moisture, microbial oxygen consumption, and finely textured clays that limit diffusion. However, the net result of variable soil redox regimes on iron (Fe) mineral dynamics and associated carbon (C) forms and fluxes is poorly understood in tropical soils. Using a 44-day redox incubation experiment with humid tropical forest soils from Puerto Rico, we examined patterns in Fe and C transformations under four redox regimes: static anoxic, "flux 4-day" (4d oxic, 4d anoxic), "flux 8-day" (8d oxic, 4d anoxic) and static oxic. Prolonged anoxia promoted reductive dissolution of Fe-oxides, and led to an increase in soluble Fe(II) and amorphous Fe oxide pools. Preferential dissolution of the less-crystalline Fe pool was evident immediately following a shift in bulk redox status (oxic to anoxic), and coincided with increased dissolved organic C, presumably due to acidification or direct release of organic matter (OM) from dissolving Fe(III) mineral phases. The average nominal oxidation state of water-soluble C was lowest under persistent anoxic conditions, suggesting that more reduced organic compounds were metabolically unavailable for microbial consumption under reducing conditions. Anoxic soil compounds had high H/C values (and were similar to lignin-like compounds) whereas oxic soil compounds had higher O/C values, akin to tannin- and cellulose-like components. Cumulative respiration derived from native soil organic C was highest in static oxic soils. These results show how Fe minerals and Fe-OM interactions in tropical soils are highly sensitive to variable redox effects. Shifting soil oxygen availability rapidly impacted exchanges between mineral-sorbed and aqueous C pools, increased the dissolved organic C pool under anoxic conditions implying that the periodicity of low-redox events may control the fate of C in wet tropical soils.
振荡的氧化还原条件是潮湿热带森林土壤的一个共同特征,这是由充足的还原剂供应和动态、高湿度、微生物耗氧以及限制扩散的细纹理粘土驱动的。然而,在热带土壤中,可变土壤氧化还原状态对铁(Fe)矿物动态及其相关碳(C)形态和通量的净结果知之甚少。本研究使用来自波多黎各的潮湿热带森林土壤进行了为期 44 天的氧化还原孵育实验,研究了在四种氧化还原条件下 Fe 和 C 转化的模式:静态缺氧、“通量 4 天”(4d 有氧,4d 缺氧)、“通量 8 天”(8d 有氧,4d 缺氧)和静态有氧。长时间缺氧促进了 Fe 氧化物的还原溶解,并导致可溶 Fe(II)和无定形 Fe 氧化物库的增加。在批量氧化还原状态(有氧到缺氧)发生变化后,立即出现较不结晶的 Fe 库优先溶解,并且与溶解有机 C 增加同时发生,这可能是由于酸化或直接从溶解的 Fe(III)矿物相中释放有机物质(OM)所致。在持续缺氧条件下,水溶性 C 的平均名义氧化态最低,这表明在还原条件下,更多还原的有机化合物对微生物的代谢不可用。缺氧土壤化合物具有较高的 H/C 值(与木质素样化合物相似),而有氧土壤化合物具有较高的 O/C 值,类似于单宁和纤维素样成分。来自原生土壤有机 C 的累积呼吸在静态有氧土壤中最高。这些结果表明,热带土壤中的 Fe 矿物和 Fe-OM 相互作用对可变氧化还原效应非常敏感。土壤氧气供应的快速变化迅速影响矿物吸附和水相 C 库之间的交换,在缺氧条件下增加了溶解有机 C 库,这意味着低氧化还原事件的周期性可能控制着湿热带土壤中 C 的命运。