Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, China.
Lab Chip. 2018 Oct 23;18(21):3263-3271. doi: 10.1039/c8lc00377g.
Anemia affects more than ¼ of the world's population, mostly concentrated in low-resource areas, and carries serious health risks. Yet current screening methods are inadequate due to their inability to separate iron deficiency anemia (IDA) from genetic anemias such as thalassemia trait (TT), thus preventing targeted supplementation of oral iron. Here we present an accurate approach to diagnose anemia and anemia type using measures of pediatric red cell morphology determined through machine learning applied to optical light scattering measurements. A partial least squares model shows that our system can accurately extract mean cell volume, red cell size heterogeneity, and mean cell hemoglobin concentration with high accuracy. These clinical parameters (or the raw data itself) can be submitted to machine learning algorithms such as quadratic discriminants or support vector machines to classify a patient into healthy, IDA, or TT. A clinical trial conducted on 268 Chinese children, of which 49 had IDA and 24 had TT, shows >98% sensitivity and specificity for diagnosing anemia, with 81% sensitivity and 86% specificity for discriminating IDA and TT. The majority of the misdiagnoses are IDA patients with particularly severe anemia, possibly requiring hospital care. Therefore, in a screening paradigm where anyone testing positive for TT is sent to the hospital for gold-standard diagnosis and care, we maximize patient benefit while minimizing use of scarce resources.
贫血影响了全球超过四分之一的人口,主要集中在资源匮乏地区,且会带来严重的健康风险。然而,由于当前的筛选方法无法将缺铁性贫血(IDA)与地中海贫血特征(TT)等遗传性贫血区分开来,因此无法针对性地补充口服铁剂。在这里,我们提出了一种使用机器学习对光散射测量值进行分析,从而对儿科红细胞形态进行测量的方法,来准确诊断贫血和贫血类型。偏最小二乘模型显示,我们的系统可以非常准确地提取平均细胞体积、红细胞大小异质性和平均细胞血红蛋白浓度等临床参数。这些临床参数(或原始数据本身)可以提交给机器学习算法,如二次判别或支持向量机,将患者分为健康、IDA 或 TT。我们对 268 名中国儿童进行了临床试验,其中 49 名患有 IDA,24 名患有 TT,该试验表明,我们的方法对诊断贫血的灵敏度和特异性均>98%,对区分 IDA 和 TT 的灵敏度和特异性分别为 81%和 86%。大多数误诊是贫血特别严重的 IDA 患者,可能需要住院治疗。因此,在 TT 检测呈阳性的患者都被送往医院进行金标准诊断和治疗的筛选模式中,我们最大限度地提高了患者的受益,同时最小化了稀缺资源的使用。