Department of Chemical Engineering and Applied Chemistry, University of Toronto, Canada.
Lab Chip. 2018 Oct 9;18(20):3112-3128. doi: 10.1039/c8lc00495a.
Most kidney diseases begin with abnormalities in glomerular podocytes, motivating the need for podocyte models to study pathophysiological mechanisms and new treatment options. However, podocytes cultured in vitro face a limited ability to maintain appreciable extents of differentiation hallmarks, raising concerns over the relevance of study results. Many key properties such as nephrin expression and morphology reach plateaus that are far from the in vivo levels. Here, we demonstrate that a biomimetic topography, consisting of microhemispheres arrayed over the cell culture substrate, promotes podocyte differentiation in vitro. We define new methods for fabricating microscale curvature on various substrates, including a thin porous membrane. By growing podocytes on our topographic substrates, we found that these biophysical cues augmented nephrin gene expression, supported full-size nephrin protein expression, encouraged structural arrangement of F-actin and nephrin within the cell, and promoted process formation and even interdigitation compared to the flat substrates. Furthermore, the topography facilitated nephrin localization on curved structures while nuclei lay in the valleys between them. The improved differentiation was also evidenced by tracking barrier function to albumin over time using our custom topomembranes. Overall, our work presents accessible methods for incorporating microcurvature on various common substrates, and demonstrates the importance of biophysical stimulation in supporting higher-fidelity podocyte cultivation in vitro.
大多数肾脏疾病始于肾小球足细胞的异常,这促使我们需要建立足细胞模型来研究病理生理机制和新的治疗方法。然而,体外培养的足细胞维持明显分化特征的能力有限,这引起了人们对研究结果相关性的关注。许多关键特性,如nephrin 的表达和形态,达到了与体内水平相去甚远的水平。在这里,我们证明了一种由微半球组成的仿生拓扑结构可以促进体外足细胞的分化。我们定义了在各种基质上(包括薄多孔膜)制造微尺度曲率的新方法。通过在我们的拓扑基质上培养足细胞,我们发现这些生物物理线索增强了nephrin 基因的表达,支持全长 nephrin 蛋白的表达,促进了细胞内 F-肌动蛋白和 nephrin 的结构排列,并促进了突起的形成,甚至与平面基质相比,还促进了突起的相互交错。此外,拓扑结构有助于 nephrin 定位于弯曲的结构上,而核位于它们之间的凹陷处。通过使用我们的定制顶膜随时间跟踪白蛋白的屏障功能,也证明了分化的改善。总的来说,我们的工作提出了在各种常见基质上引入微曲率的简单方法,并证明了生物物理刺激在支持体外更高保真度足细胞培养中的重要性。