Suppr超能文献

构建具有更高生理相关性的血管芯片

Building Blood Vessel Chips with Enhanced Physiological Relevance.

作者信息

Mu Xuan, Gerhard-Herman Marie Denise, Zhang Yu Shrike

机构信息

Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA.

Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02114, USA.

出版信息

Adv Mater Technol. 2023 Apr 6;8(7). doi: 10.1002/admt.202201778. Epub 2023 Feb 3.

Abstract

Blood vessel chips are bioengineered microdevices, consisting of biomaterials, human cells, and microstructures, which recapitulate essential vascular structure and physiology and allow a well-controlled microenvironment and spatial-temporal readouts. Blood vessel chips afford promising opportunities to understand molecular and cellular mechanisms underlying a range of vascular diseases. The physiological relevance is key to these blood vessel chips that rely on bioinspired strategies and bioengineering approaches to translate vascular physiology into artificial units. Here, we discuss several critical aspects of vascular physiology, including morphology, material composition, mechanical properties, flow dynamics, and mass transport, which provide essential guidelines and a valuable source of bioinspiration for the rational design of blood vessel chips. We also review state-of-art blood vessel chips that exhibit important physiological features of the vessel and reveal crucial insights into the biological processes and disease pathogenesis, including rare diseases, with notable implications for drug screening and clinical trials. We envision that the advances in biomaterials, biofabrication, and stem cells improve the physiological relevance of blood vessel chips, which, along with the close collaborations between clinicians and bioengineers, enable their widespread utility.

摘要

血管芯片是生物工程微器件,由生物材料、人类细胞和微结构组成,它概括了基本的血管结构和生理学特征,并允许进行良好控制的微环境和时空读数。血管芯片为理解一系列血管疾病背后的分子和细胞机制提供了有前景的机会。生理相关性是这些血管芯片的关键,这些芯片依靠仿生策略和生物工程方法将血管生理学转化为人工单元。在此,我们讨论血管生理学的几个关键方面,包括形态、材料组成、力学性能、流动动力学和物质传输,这些为血管芯片的合理设计提供了基本指导方针和宝贵的生物灵感来源。我们还综述了展现血管重要生理特征的先进血管芯片,并揭示了对包括罕见病在内的生物过程和疾病发病机制的关键见解,这对药物筛选和临床试验具有显著意义。我们设想,生物材料、生物制造和干细胞方面的进展将提高血管芯片的生理相关性,这与临床医生和生物工程师之间的密切合作一起,将使它们得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/323c/10489284/3928934c631b/nihms-1872399-f0001.jpg

相似文献

1
Building Blood Vessel Chips with Enhanced Physiological Relevance.构建具有更高生理相关性的血管芯片
Adv Mater Technol. 2023 Apr 6;8(7). doi: 10.1002/admt.202201778. Epub 2023 Feb 3.
2
The Applications and Challenges of the Development of Tumor Microenvironment Chips.肿瘤微环境芯片开发的应用与挑战
Cell Mol Bioeng. 2022 Dec 26;16(1):3-21. doi: 10.1007/s12195-022-00755-7. eCollection 2023 Feb.
4
Bioinspired Engineering of Organ-on-Chip Devices.器官芯片的仿生工程。
Adv Exp Med Biol. 2019;1174:401-440. doi: 10.1007/978-981-13-9791-2_13.
7
Small tissue chips with big opportunities for space medicine.小组织芯片为太空医学带来大机遇。
Life Sci Space Res (Amst). 2022 Nov;35:150-157. doi: 10.1016/j.lssr.2022.09.002. Epub 2022 Sep 8.
8
Tissue Chips to aid drug development and modeling for rare diseases.用于辅助罕见病药物研发及建模的组织芯片
Expert Opin Orphan Drugs. 2016;4(11):1113-1121. doi: 10.1080/21678707.2016.1244479. Epub 2016 Oct 19.
10
Stem cell-based Lung-on-Chips: The best of both worlds?基于干细胞的肺芯片:两全其美?
Adv Drug Deliv Rev. 2019 Feb 1;140:12-32. doi: 10.1016/j.addr.2018.07.005. Epub 2018 Jul 25.

引用本文的文献

6
Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes.工程合成红细胞作为下一代血液替代品
Adv Funct Mater. 2024 Jul 10;34(28). doi: 10.1002/adfm.202315879. Epub 2024 Feb 8.
7
Functional Neural Networks in Human Brain Organoids.人脑类器官中的功能性神经网络。
BME Front. 2024 Sep 23;5:0065. doi: 10.34133/bmef.0065. eCollection 2024.

本文引用的文献

1
Small tissue chips with big opportunities for space medicine.小组织芯片为太空医学带来大机遇。
Life Sci Space Res (Amst). 2022 Nov;35:150-157. doi: 10.1016/j.lssr.2022.09.002. Epub 2022 Sep 8.
6
Biomimetic models of the glomerulus.肾小球的仿生模型。
Nat Rev Nephrol. 2022 Apr;18(4):241-257. doi: 10.1038/s41581-021-00528-x. Epub 2022 Jan 21.
9
Organoid and microfluidics-based platforms for drug screening in COVID-19.基于类器官和微流控的 COVID-19 药物筛选平台。
Drug Discov Today. 2022 Apr;27(4):1062-1076. doi: 10.1016/j.drudis.2021.12.014. Epub 2021 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验