Ezra Gregory S, Wiggins Stephen
Department of Chemistry and Chemical Biology , Baker Laboratory, Cornell University , Ithaca , New York 14853 , United States.
School of Mathematics , University of Bristol , Bristol BS8 1TW , United Kingdom.
J Phys Chem A. 2018 Oct 25;122(42):8354-8362. doi: 10.1021/acs.jpca.8b07205. Epub 2018 Oct 12.
In this paper, we further investigate the construction of a phase space dividing surface (DS) from a normally hyperbolic invariant manifold (NHIM) and the sampling procedure for the resulting dividing surface described in earlier work ( Wiggins , S. ; J. Chem. Phys. 2016 , 144 , 054107 ). Our discussion centers on the relationship between geometrical structures and dynamics for 2 and 3 degree of freedom (DoF) systems, specifically, the construction of a DS from a NHIM. We show that if the equation for the NHIM and associated DS is known (e.g., as obtained from Poincaré-Birkhoff normal form theory), then the numerical procedure described in Wiggins et al. ( J. Chem. Phys. 2016 , 144 , 054107 ) gives the same result as a sampling method based upon the explicit form of the NHIM. After describing the sampling procedure in a general context, it is applied to a quadratic Hamiltonian normal form near an index-one saddle where explicit formulas exist for both the NHIM and the DS. It is shown for both 2 and 3 DoF systems that a version of the general sampling procedure provides points on the analytically defined DS with the correct microcanonical density on the constant-energy DS. Excellent agreement is obtained between analytical and numerical averages of quadratic energy terms over the DS for a range of energies.
在本文中,我们进一步研究了从正常双曲不变流形(NHIM)构建相空间分界面(DS)以及早期工作(Wiggins,S.;《化学物理杂志》,2016年,第144卷,054107)中所描述的所得分界面的采样过程。我们的讨论集中在二自由度(DoF)和三自由度系统的几何结构与动力学之间的关系上,具体而言,是从NHIM构建DS。我们表明,如果已知NHIM和相关DS的方程(例如,从庞加莱 - 伯克霍夫范式理论获得),那么Wiggins等人(《化学物理杂志》,2016年,第144卷,054107)中描述的数值过程与基于NHIM显式形式的采样方法给出相同的结果。在一般背景下描述采样过程后,将其应用于接近一阶鞍点的二次哈密顿范式,其中NHIM和DS都存在显式公式。对于二自由度和三自由度系统都表明,一般采样过程的一个版本在解析定义的DS上提供具有恒定能量DS上正确微正则密度的点。对于一系列能量,DS上二次能量项的解析平均值和数值平均值之间获得了极好的一致性。