Shanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering , Shanghai Jiao Tong University , Shanghai 200240 , China.
Micrometer School of Materials Science and Engineering , Boise State University , Boise , Idaho 83725 , United States.
ACS Appl Mater Interfaces. 2018 Oct 31;10(43):36969-36975. doi: 10.1021/acsami.8b12302. Epub 2018 Oct 16.
Slow kinetics and low specific capacity of graphite anode significantly limit its applications in the rapidly developing lithium-ion battery (LIB) markets. Herein, we report a carbon framework anode with ultrafast rate and cycling stability for LIBs by nitrogen and phosphorus doping. The electrode structure is constructed of a 3D framework built from 2D heteroatom-doped graphene layers via pyrolysis of self-assembled supramolecular aggregates. The synergistic effect from the nanostructured 3D framework and chemical doping (i.e., N- and P-doping) enables fast kinetics in charge storage and transport. A high reversible capacity of 946 mAh g is delivered at a current rate of 0.5 A g, and excellent rate capability (e.g., a capacity of 595 mAh g at 10 A g) of the electrode is shown. Moreover, a moderate surface area from the 3D porous structure contributes to a relatively high initial Coulombic efficiency of 74%, compared to other graphene-based anode materials. The electrode also demonstrates excellent cycling stability at a current rate of 2 A g for 2000 cycles. The synthetic strategy proposed here is highly efficient and green, which can provide guidance for large-scale controllable fabrication of carbon-based anode materials.
石墨阳极的缓慢动力学和低比容量极大地限制了其在快速发展的锂离子电池(LIB)市场中的应用。在此,我们通过氮磷掺杂报告了一种用于 LIB 的具有超快倍率和循环稳定性的碳框架阳极。该电极结构由通过自组装超分子聚集体的热解构建的二维杂原子掺杂石墨烯层的 3D 框架组成。纳米结构 3D 框架和化学掺杂(即 N 和 P 掺杂)的协同作用使电荷存储和传输具有快速动力学。在电流速率为 0.5 A g 时,可提供 946 mAh g 的高可逆容量,并且显示出优异的倍率性能(例如,在 10 A g 时的容量为 595 mAh g)。此外,来自 3D 多孔结构的适度表面积有助于与其他基于石墨烯的阳极材料相比,具有相对较高的初始库仑效率 74%。该电极在 2 A g 的电流速率下循环 2000 次也表现出优异的循环稳定性。这里提出的合成策略高效且环保,可为大规模可控制造基于碳的阳极材料提供指导。