Pan Hanqing, Huang Yan, Cen Xinnuo, Zhang Ming, Hou Jianhua, Wu Chao, Dou Yuhai, Sun Bing, Wang Ying, Zhang Binwei, Zhang Lei
Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China.
College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
Adv Sci (Weinh). 2024 Oct;11(37):e2400364. doi: 10.1002/advs.202400364. Epub 2024 Jan 22.
Sodium-ion batteries (SIBs) and sodium-ion capacitors (SICs) are promising candidates for cost-effective and large-scale energy storage devices. However, sluggish kinetics and low capacity of traditional anode materials inhibit their practical applications. Herein, a novel design featuring a layer-expanded MoS is presented that dual-reinforced by hollow N, P-codoped carbon as the inner supporter and surface groups abundant MXene as the outer supporter, resulting in a cross-linked robust composite (NPC@MoS/MXene). The hollow N, P-codoped carbon effectively prevents agglomeration of MoS layers and facilitates shorter distances between the electrolyte and electrode. The conductive MXene outer surface envelops the NPC@MoS units inside, creating interconnected channels that enable efficient charge transfer and diffusion, ensuring rapid kinetics and enhanced electrode utilization. It exhibits a high reversible capacity of 453 mAh g, remarkable cycling stability, and exceptional rate capability with 54% capacity retention when the current density increases from 100 to 5000 mA g toward SIBs. The kinetic mechanism studies reveal that the NPC@MoS/MXene demonstrates a pseudocapacitance dominated hybrid sodiation/desodiation process. Coupled with active carbon (AC), the NPC@MoS/MXene//AC SICs achieve both high energy density of 136 Wh kg at 254 W kg and high-power density of 5940 W kg at 27 Wh g, maintaining excellent stability.
钠离子电池(SIBs)和钠离子电容器(SICs)是具有成本效益且适合大规模储能设备的理想选择。然而,传统负极材料的动力学缓慢和容量较低限制了它们的实际应用。在此,我们提出了一种新颖的设计,即通过空心氮、磷共掺杂碳作为内部支撑体和富含表面基团的MXene作为外部支撑体对层状MoS进行双重强化,从而得到一种交联的坚固复合材料(NPC@MoS/MXene)。空心氮、磷共掺杂碳有效地防止了MoS层的团聚,并缩短了电解质与电极之间的距离。导电的MXene外表面包裹着内部的NPC@MoS单元,形成相互连接的通道,实现高效的电荷转移和扩散,确保快速的动力学和提高电极利用率。对于SIBs,当电流密度从100 mA g增加到5000 mA g时,它表现出453 mAh g的高可逆容量、出色的循环稳定性和优异的倍率性能,容量保持率为54%。动力学机制研究表明,NPC@MoS/MXene表现出以赝电容为主的混合脱钠/嵌钠过程。与活性炭(AC)耦合,NPC@MoS/MXene//AC SICs在254 W kg时实现了136 Wh kg的高能量密度,在27 Wh g时实现了5940 W kg的高功率密度,并保持了优异的稳定性。