Suppr超能文献

用于磁共振图像采集和无线通信的集成射频/无线线圈设计。

Integrated radio-frequency/wireless coil design for simultaneous MR image acquisition and wireless communication.

机构信息

Brain Imaging and Analysis Center, Duke University, Durham, North Carolina.

Medical Physics Graduate Program, Duke University, Durham, North Carolina.

出版信息

Magn Reson Med. 2019 Mar;81(3):2176-2183. doi: 10.1002/mrm.27513. Epub 2018 Sep 14.

Abstract

PURPOSE

An innovative radio-frequency (RF) coil design that allows RF currents both at the Larmor frequency and in a wireless communication band to flow on the same coil is proposed to enable simultaneous MRI signal reception and wireless data transfer, thereby minimizing the number of wired connections in the scanner without requiring any modifications or additional hardware within the scanner bore.

METHODS

As a first application, the proposed integrated RF/wireless coil design was further combined with an integrated RF/shim coil design to perform not only MR image acquisition and wireless data transfer, but also localized B shimming with a single coil. Proof-of-concept phantom experiments were conducted with such a coil to demonstrate its ability to simultaneously perform these three functions, while maintaining the RF performance, wireless data integrity, and B shimming performance.

RESULTS

Performing wirelessly controlled shimming of localized B inhomogeneities with the coil substantially reduced the B root-mean-square error (>70%) and geometric distortions in echo-planar images without degrading the image quality, signal-to-noise ratio (<1.7%), or wireless data throughput (maximum variance = 0.04 Mbps) of the coil.

CONCLUSIONS

The RF/wireless coil design can provide a solution for wireless data transfer that can be easily integrated into existing MRI scanners for a variety of applications.

摘要

目的

提出了一种创新的射频(RF)线圈设计,允许在同一线圈上同时流动拉莫尔频率和无线通信频段的 RF 电流,从而实现磁共振成像信号接收和无线数据传输的同时进行,从而最大限度地减少扫描器中的有线连接数量,而无需在扫描器孔径内进行任何修改或添加额外的硬件。

方法

作为第一个应用,所提出的集成 RF/无线线圈设计进一步与集成 RF/屏蔽线圈设计相结合,不仅可以进行磁共振图像采集和无线数据传输,还可以使用单个线圈进行局部 B 调谐。通过对该线圈进行的概念验证体模实验,证明了其同时执行这三个功能的能力,同时保持了 RF 性能、无线数据完整性和 B 调谐性能。

结果

使用该线圈进行无线控制的局部 B 不均匀性调谐可显著降低回波平面图像中的 B 均方根误差(>70%)和几何变形,而不会降低图像质量、信噪比(<1.7%)或线圈的无线数据吞吐量(最大方差=0.04 Mbps)。

结论

RF/无线线圈设计可以为无线数据传输提供一种解决方案,可以轻松集成到现有的磁共振成像扫描仪中,适用于各种应用。

相似文献

1
Integrated radio-frequency/wireless coil design for simultaneous MR image acquisition and wireless communication.
Magn Reson Med. 2019 Mar;81(3):2176-2183. doi: 10.1002/mrm.27513. Epub 2018 Sep 14.
3
Adaptive integrated parallel reception, excitation, and shimming (iPRES-A) with microelectromechanical systems switches.
Magn Reson Med. 2018 Jul;80(1):371-379. doi: 10.1002/mrm.27007. Epub 2017 Nov 16.
4
An iPRES-W Coil Array for Simultaneous Imaging and Wireless Localized B Shimming of the Cervical Spinal Cord.
Magn Reson Med. 2022 Aug;88(2):1002-1014. doi: 10.1002/mrm.29257. Epub 2022 Apr 25.
5
Integrated RF/shim coil array for parallel reception and localized B0 shimming in the human brain.
Neuroimage. 2014 Dec;103:235-240. doi: 10.1016/j.neuroimage.2014.09.052. Epub 2014 Sep 28.
7
Application of an integrated radio-frequency/shim coil technology for signal recovery in fMRI.
Magn Reson Med. 2021 Dec;86(6):3067-3081. doi: 10.1002/mrm.28925. Epub 2021 Jul 20.
8
Flexible multi-purpose integrated RF/shim coil array for MRI and localized B shimming.
Magn Reson Med. 2024 Feb;91(2):842-849. doi: 10.1002/mrm.29891. Epub 2023 Oct 17.
9
Dynamic B shimming of the human brain at 9.4 T with a 16-channel multi-coil shim setup.
Magn Reson Med. 2018 Oct;80(4):1714-1725. doi: 10.1002/mrm.27110. Epub 2018 Feb 9.
10
Integrated parallel reception, excitation, and shimming (iPRES).
Magn Reson Med. 2013 Jul;70(1):241-7. doi: 10.1002/mrm.24766. Epub 2013 Apr 29.

引用本文的文献

3
An iPRES-W Coil Array for Simultaneous Imaging and Wireless Localized B Shimming of the Cervical Spinal Cord.
Magn Reson Med. 2022 Aug;88(2):1002-1014. doi: 10.1002/mrm.29257. Epub 2022 Apr 25.
4
Recent Advances in Radio-Frequency Coil Technologies: Flexible, Wireless, and Integrated Coil Arrays.
J Magn Reson Imaging. 2022 Apr;55(4):1026-1042. doi: 10.1002/jmri.27865. Epub 2021 Jul 29.
5
Wireless Powered Encoding and Broadcasting of Frequency Modulated Detection Signals.
IEEE Access. 2020;8:200450-200460. doi: 10.1109/access.2020.3035938. Epub 2020 Nov 4.
6
Wireless Reconfigurable RF Detector Array for Focal and Multiregional Signal Enhancement.
IEEE Access. 2020;8:136594-136604. doi: 10.1109/access.2020.3011905. Epub 2020 Jul 24.

本文引用的文献

1
A Millimeter-Wave Digital Link for Wireless MRI.
IEEE Trans Med Imaging. 2017 Feb;36(2):574-583. doi: 10.1109/TMI.2016.2622251. Epub 2016 Oct 27.
3
A 32-channel combined RF and B0 shim array for 3T brain imaging.
Magn Reson Med. 2016 Jan;75(1):441-51. doi: 10.1002/mrm.25587. Epub 2015 Feb 17.
4
Inductively coupled wireless RF coil arrays.
Magn Reson Imaging. 2015 Apr;33(3):351-7. doi: 10.1016/j.mri.2014.12.004. Epub 2014 Dec 16.
5
Integrated RF/shim coil array for parallel reception and localized B0 shimming in the human brain.
Neuroimage. 2014 Dec;103:235-240. doi: 10.1016/j.neuroimage.2014.09.052. Epub 2014 Sep 28.
6
Integrated parallel reception, excitation, and shimming (iPRES).
Magn Reson Med. 2013 Jul;70(1):241-7. doi: 10.1002/mrm.24766. Epub 2013 Apr 29.
7
Massively parallel MRI detector arrays.
J Magn Reson. 2013 Apr;229:75-89. doi: 10.1016/j.jmr.2013.02.001. Epub 2013 Feb 7.
8
Prospective motion correction in brain imaging: a review.
Magn Reson Med. 2013 Mar 1;69(3):621-36. doi: 10.1002/mrm.24314. Epub 2012 May 8.
9
Dynamic multi-coil shimming of the human brain at 7 T.
J Magn Reson. 2011 Oct;212(2):280-8. doi: 10.1016/j.jmr.2011.07.005. Epub 2011 Jul 23.
10
Spatiotemporal magnetic field monitoring for MR.
Magn Reson Med. 2008 Jul;60(1):187-97. doi: 10.1002/mrm.21603.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验