Suppr超能文献

利用荧光假单胞菌的Lap系统可逆地定制细菌细胞表面

Co-opting the Lap System of Pseudomonas fluorescens To Reversibly Customize Bacterial Cell Surfaces.

作者信息

Smith T Jarrod, Sondermann Holger, O'Toole George A

机构信息

Department of Microbiology and Immunology , Geisel School of Medicine at Dartmouth , Room 202 Remsen Building, Hanover , New Hampshire 03755 , United States.

Department of Molecular Medicine, College of Veterinary Medicine , Cornell University , Ithaca , New York 14853 , United States.

出版信息

ACS Synth Biol. 2018 Nov 16;7(11):2612-2617. doi: 10.1021/acssynbio.8b00278. Epub 2018 Oct 16.

Abstract

Initial attachment to a surface is a key and highly regulated step in biofilm formation. In this study, we present a platform for reversibly functionalizing bacterial cell surfaces with an emphasis on designing biofilms. We engineered the Lap system of Pseudomonas fluorescens Pf0-1, which is normally used to regulate initial cell surface attachment, to display various protein cargo at the bacterial cell surface and control extracellular release of the cargo in response to changing levels of the second messenger c-di-GMP. To accomplish this goal, we fused the protein cargo between the N-terminal retention module and C-terminal secretion signal of LapA and controlled surface localization of the cargo with natural signals known to stimulate or deplete c-di-GMP levels in P. fluorescens Pf0-1. We show this system can tolerate large cargo in excess of 500 amino acids, direct P. fluorescens Pf0-1 to surfaces it does not typically colonize, and program this microbe to sequester the toxic medal cadmium.

摘要

最初附着于表面是生物膜形成过程中的关键且受到高度调控的步骤。在本研究中,我们提出了一个用于对细菌细胞表面进行可逆功能化的平台,重点在于设计生物膜。我们改造了荧光假单胞菌Pf0-1的Lap系统,该系统通常用于调节细胞表面的初始附着,以便在细菌细胞表面展示各种蛋白质负载,并根据第二信使环二鸟苷酸(c-di-GMP)水平的变化来控制负载的细胞外释放。为实现这一目标,我们将蛋白质负载融合在LapA的N端保留模块和C端分泌信号之间,并利用已知可刺激或降低荧光假单胞菌Pf0-1中c-di-GMP水平的天然信号来控制负载的表面定位。我们证明该系统能够容纳超过500个氨基酸的大型负载,引导荧光假单胞菌Pf0-1附着于其通常不会定殖的表面,并使这种微生物能够螯合有毒金属镉。

相似文献

5
From Input to Output: The Lap/c-di-GMP Biofilm Regulatory Circuit.从输入到输出:Lap/c-di-GMP 生物膜调控回路。
Annu Rev Microbiol. 2020 Sep 8;74:607-631. doi: 10.1146/annurev-micro-011520-094214. Epub 2020 Jul 20.
9
Reconstitution of a biofilm adhesin system from a sulfate-reducing bacterium in .在 …… 中从硫酸盐还原菌中重建生物膜黏附系统。
Proc Natl Acad Sci U S A. 2024 Mar 26;121(13):e2320410121. doi: 10.1073/pnas.2320410121. Epub 2024 Mar 18.

本文引用的文献

8
Programming Surface Chemistry with Engineered Cells.利用工程细胞对表面化学进行编程。
ACS Synth Biol. 2016 Sep 16;5(9):936-41. doi: 10.1021/acssynbio.6b00037. Epub 2016 Jun 6.
9
Enhanced Shewanella biofilm promotes bioelectricity generation.强化的希瓦氏菌生物膜促进生物电生成。
Biotechnol Bioeng. 2015 Oct;112(10):2051-9. doi: 10.1002/bit.25624. Epub 2015 May 12.
10
The giant adhesin SiiE of Salmonella enterica.肠炎沙门氏菌的巨大黏附素SiiE
Molecules. 2015 Jan 12;20(1):1134-50. doi: 10.3390/molecules20011134.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验