Suppr超能文献

蓝光可切换细菌黏附作为生物膜设计的关键步骤。

Blue Light Switchable Bacterial Adhesion as a Key Step toward the Design of Biofilms.

作者信息

Chen Fei, Wegner Seraphine V

机构信息

Max Planck Institute for Polymer Research , Ackermannweg 10, 55128 Mainz, Germany.

出版信息

ACS Synth Biol. 2017 Dec 15;6(12):2170-2174. doi: 10.1021/acssynbio.7b00197. Epub 2017 Aug 17.

Abstract

The control of where and when bacteria adhere to a substrate is a key step toward controlling the formation and organization in biofilms. This study shows how we engineer bacteria to adhere specifically to substrates with high spatial and temporal control under blue light, but not in the dark, by using photoswitchable interaction between nMag and pMag proteins. For this, we express pMag proteins on the surface of E. coli so that the bacteria can adhere to substrates with immobilized nMag protein under blue light. These adhesions are reversible in the dark and can be repeatedly turned on and off. Further, the number of bacteria that can adhere to the substrate as well as the attachment and detachment dynamics are adjustable by using different point mutants of pMag and altering light intensity. Overall, the blue light switchable bacteria adhesions offer reversible, tunable and bioorthogonal control with exceptional spatial and temporal resolution. This enables us to pattern bacteria on substrates with great flexibility.

摘要

控制细菌在何时何地附着于基质是控制生物膜形成和组织的关键步骤。本研究展示了我们如何通过利用nMag和pMag蛋白之间的光开关相互作用,设计细菌在蓝光下而非黑暗中以高度的空间和时间控制特异性地附着于基质。为此,我们在大肠杆菌表面表达pMag蛋白,使细菌能够在蓝光下附着于固定有nMag蛋白的基质。这些附着在黑暗中是可逆的,并且可以反复开启和关闭。此外,通过使用pMag的不同点突变体并改变光强度,可以调节能够附着于基质的细菌数量以及附着和脱离动力学。总体而言,蓝光可切换的细菌附着提供了具有卓越空间和时间分辨率的可逆、可调谐且生物正交的控制。这使我们能够极其灵活地在基质上对细菌进行图案化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验