Tambasco Lucas D, Bush John W M
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Chaos. 2018 Sep;28(9):096115. doi: 10.1063/1.5033962.
We explore the effects of an imposed potential with both oscillatory and quadratic components on the dynamics of walking droplets. We first conduct an experimental investigation of droplets walking on a bath with a central circular well. The well acts as a source of Faraday waves, which may trap walking droplets on circular orbits. The observed orbits are stable and quantized, with preferred radii aligning with the extrema of the well-induced Faraday wave pattern. We use the stroboscopic model of Oza [J. Fluid Mech. , 552-570 (2013)] with an added potential to examine the interaction of the droplet with the underlying well-induced wavefield. We show that all quantized orbits are stable for low vibrational accelerations. Smaller orbits may become unstable at higher forcing accelerations and transition to chaos through a path reminiscent of the Ruelle-Takens-Newhouse scenario. We proceed by considering a generalized pilot-wave system in which the relative magnitudes of the pilot-wave force and drop inertia may be tuned. When the drop inertia is dominated by the pilot-wave force, all circular orbits may become unstable, with the drop chaotically switching between them. In this chaotic regime, the statistically stationary probability distribution of the drop's position reflects the relative instability of the unstable circular orbits. We compute the mean wavefield from a chaotic trajectory and confirm its predicted relationship with the particle's probability density function.
我们探究了具有振荡和二次项分量的外加势对行走液滴动力学的影响。我们首先对在带有中心圆形阱的液池中行走的液滴进行了实验研究。该阱充当法拉第波的源,法拉第波可能会将行走的液滴捕获在圆形轨道上。观察到的轨道是稳定且量子化的,其优选半径与阱诱导的法拉第波图案的极值对齐。我们使用奥扎(Oza)的频闪模型[《流体力学杂志》,552 - 570(2013)]并添加一个势来研究液滴与底层阱诱导波场的相互作用。我们表明,对于低振动加速度,所有量子化轨道都是稳定的。较小的轨道在较高的强迫加速度下可能会变得不稳定,并通过一条让人联想到吕埃勒 - 塔肯斯 - 纽豪斯(Ruelle - Takens - Newhouse)情形的路径转变为混沌状态。我们接着考虑一个广义的导波系统,其中导波力和液滴惯性的相对大小可以被调节。当液滴惯性由导波力主导时,所有圆形轨道可能会变得不稳定,液滴会在它们之间混沌地切换。在这种混沌状态下,液滴位置的统计稳定概率分布反映了不稳定圆形轨道的相对不稳定性。我们从一条混沌轨迹计算出平均波场,并证实了它与粒子概率密度函数的预测关系。